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Abstract

The aim of this paper is to obtain the solution of the operator equation 7x = y
for an infinite band matrix 7 using its finite-dimensional truncations 7,x" = y,.
Several verifiable conditions are given to obtain the invertibility of 7. An application
in connection with a stable set of sampling for functions belonging to a shift-invariant
space is discussed along with an illustration.
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1 Introduction

In 2006, Balasubramanian et al. [10] studied the solution of a tridiagonal operator
equation Tx = y on £2(N) using its finite sections T,x” = y". They showed that
if {|7,7"ex|} and [||Tn*71en II} are bounded, then 7 is invertible and the solution
can be obtained as a limit in the norm topology of the solutions of its finite sections.
The main aim of this paper is to obtain a similar result for an infinite band matrix,
so generalizing the findings in [10]. In numerical analysis, solutions of band matrix
equations play a crucial role when one has to obtain numerical solution of ordinary
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and partial differential equations in connection with boundary value problems and
numerical approximation methods of local type. These matrices arise while looking at
the approximate solutions of such boundary value problems by local approximation
methods such as finite differences, finite elements, isogeometric analysis etc. Some
of the references in this direction are [9, 13, 17, 21, 31, 32]. Further regarding the
invertibility of an operator, it is well known that if T € B(H) where H is a separable
Hilbert space, has a strict row and column dominance property then T is invertible.
Further, an infinite version of Gerschgorin theorem gives the information about the
spectrum of T. In fact, let T = (o;;), r; = Zj# lo 1, r; = Zk#i lagi|. If D; =

B(aii, i) and D; = B(a;, r;), then Sp(T) c (U; Di U D).

The method used in [10] makes use of determinants of 7, and their recurrence
relations. In fact, the expressions for Tn’]en and Tn*flen were written in terms of
determinants of T;,, T,,—1, - - - and T7. This was a strong restriction as it dealt with the
specific nature of tridiagonal structure and hence the result could not be generalized to
infinite band matrices with bandwidth 2M + 1 for an arbitrary M. Our new approach
totally avoids the expressions in terms of determinants. In fact, we obtain the expres-
sions for Tn_len_ jand Tn*_1 e,—j,0 < j < M — 1 using matrix equations. Before we
mention about the contents of the paper, we shall give a brief introduction to the finite
section method. We refer to [11, 16, 24, 30] in this connection.

Let H be a separable Hilbert space with an orthonormal basis {e, : n € N}. Let H,
denote the span of {ey, ..., e,}. Let T € B(H), the class of bounded linear operators
on H. Let 7,, denote T,, = PnTIH,, where P, denotes the orthogonal projection of H
onto H,. The n x n matrix T, is called a finite section or a Galerkin approximation
of T. In general in order to study the analytic properties of 7 one can first study
the analytic properties of 7,, and extend to the whole of 7. This method is called
finite section method or Galerkin method. The finite section method has been used in
several contexts such as variational problems [18, 22], solutions of operator equations
involving convolution operators, Toeplitz operators and block Toeplitz operators [11,
12, 23]. Another important problem is the study of spectrum of a self adjoint operator
T on a Hilbert space using its finite sections. Arveson [7, 8] showed that only if the
given operator T is viewed as an element of an appropriate C* algebra, one can see
the precise nature of limit of the eigenvalue distributions: the limit is associated with
a tracial state on 7.

One of the important aims of the paper [10] was to obtain sufficient conditions
using the entries of 7" explicitly in order to show the boundedness of {|| Tn’] en ||} and

{||Tn*71e,, II}. A complicated theorem (Theorem 6.1 in [10] was proved and several
sufficient conditions were obtained as corollaries. Recently in [6] Antony Selvan and
Radha extended the study to a tridiagonal operator T on £2(Z) in obtaining the solution
of Tx = y using finite sections. They also proved that if T is a tridiagonal operator on
02(Z) which, is strictly row and column dominant except for a finite number of rows
and columns, then 7 is invertible.

The aim of this paper is to study the invertibility of infinite band matrices 7" and
solutions of their operator equations when 7' € B(£2(N)) and T € B(¢%(Z)) as well.
We also wish to obtain the solution of such operator equations 7x = y using its finite-
dimensional truncations 7,,x" = y,. Furthermore in the case of a tridiagonal operator,
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we give a verifiable condition to get the boundedness of {|| Tn_len H} and {|| Tn*71 enll}
without using the complicated theorem (Theorem 6.1 in [10]) for the invertibility of 7.
In particular, we prove that if the product of consecutive diagonal elements in absolute
value, |d,d,+1], is large enough, then we can obtain the invertibility of 7. In other
words, even if infinitely many rows and columns lack diagonal dominance condition,
we can establish the invertibility of 7. We also extend the verifiability criterion for a
doubly infinite tridiagonal operator. We illustrate the verifiability conditions by simple
numerical examples. Furthermore, we extend the verifiability conditions for doubly
infinite pentadiagonal operators which clearly show that the theory can be extended
to a general (2M + 1) diagonal operator.

In the final part of the paper, an application in connection with a stable set of
sampling for functions belonging to a shift-invariant space is discussed along with an
illustration.

2 Matrices with bandwidth 2M+1 on £2(N)

Let H denote a separable Hilbert space with orthonormal basis {e, : n € N}. Let H,
denote the linear span of {ey, ..., e,} and P,, the orthogonal projection of H onto
Hp.LetT : ' H — H bea2M + 1 diagonal operator defined as

3
|
—_

. M .
J X J R
Uy j€n—j +dye, + 121 ln+je’1+]’ n<M,

~
o
=
|
<~
Il
-

2.1

M=

A M.
J . J .
Uy j€n— +d,e, + Zl ln+jen+], n>M,
j:

~.
Il

where {d,}, {l,{} and {uﬁ'} for j = 1,..., M are bounded sequences of complex
numbers. Further, we assume that the sequence {d,} is bounded from below by a
number kg > 0. Then T, : 'H,, — H,, can be defined as

T, = P,TP, = P,T},, .
It is clear that matrix of 7;, with respect to the orthonormal basis {eq, ..., e,} consists

of first n rows and n colums of 7. The matrices 7,, are known as finite sections or
Galerkin approximations of 7. In matrix notation 7}, (for large n) can be written as

[(dyul W o W0 0 -0

odud a0 w0 .00

l% l31 ds ul uéw_l ug"’ 0
T,=1| :

0 oo 0 LY BT Ly g,

00 0 L dy |
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We can also write 7, (for large n) as

— 0
T — T,-1 U, m | _ T—1 Uy
n — . - Ln dn ’
1.
Uy
L 0 Mo g,

where U, = (0, ...,0,uM ... oul DT, L, =0,...,0,1M ... 1}).

We assume that each 7, is invertible. Our first aim is to calculate 7, le, and Tn’;I en.
Let T,x = e,, where X = (x1, ...,xn_l,xn)T. We can write X = (in_l,x,,)T,
Xy—1 = (x1, ..., xp—1)T, 0,_1 is the n — 1 dimensional vector of zeros. With the
above notation we can write 7,,X = ¢,, as

T, Uy Xp—1 _ 05—1
Ly do || %o |7 1 |

which reduces to the system of equations

T 1Xp—1 + Upxy =0, (2.2)
L,X,_1+dyx, = 1. 2.3)
Since T,, is invertible for each n, from (2.2) we obtain X,_| = —Tnill U,x,. After

substituting this value of X,,_1 in (2.3) we get

—1
1 _TnflU"

Xn =~ 1., and X,_| = P
dy — L, T\ U, dy — L, T\ U,

Let 7, U, = ate1 + - -+ ay_1es—1. Then L, T, Uy = IMay_p + - +11an_1.
Therefore

—(are1 + -+ ap—1e,—1) +ep

dy — (lrjlwan—M + -+ ly%an—l)

Tn_len =X=

: 1
—| . 2.4)
—an—1 dy — (l,llwan—M + 4+ lyllan—l)

. . -1
In a similar fashion we can calculate 7, e,. We have

Tn* — [Tn*;l L_;lk} s
Ur d,
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where L}, U denote the adjoint of L, and U, respectively. Now, considering the
expression

-1
Tn*—lLZ =biei + -+ by—14-1, 2.5)
as in the case of Tn’1 e,,, we can show that

-1 —(bier+ -+ ba_1ep—1) +ep

T ey = = : (2.6)
t Ay — @M by o+ b))

. . _ _ X, _
Now we wish to calculate Tn_len,l. Again let T,X = ¢,—1. For x = |: " 1i| , We

Xn
have
0
T,—1 Uy Xp—1 _ _ €n—1
n dn Xn 1 0 ’
0
which reduces to
Th—1Xp—1 + Upxp = €y—1, 2.7
LyXy—1 +dpxy =0, (2.8)

where e, is the n — 1 dimensional unit vector, more precisely,

501 () 1 ifj=n-—1,
€ =
n=1tJ 0 otherwise.

Once again, solving, we end up with

_1 _1 -
T_illé’nfl + (Tn,IUn)LnZ‘,Il,lenfl
T le, | = " dy =Ly T, Uy
n "= _ LnTnil]érzfl
dy—LaT, U,

Similarly, we obtain

-1 =1
T*—lé, L+ (Tn*_] L:)U:Tn*_l 1
n—1"n— — -1
d Ui Ty L
_ U)’{Tn*fl én_l
E"_U;lk Tn*: 1I LZ

-1
*
T, ep—1=

(2.9)
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. -1 -1 _ _
Similarly, we can calculate 7, e,_2, ..., T,;’< en—p and T, Yew_o, ..., T ey

Now, let T,x"* = y, and x" = ai")q + -+ a™e,. Then

B —1
O{,(ln) = (Xn, en) = <Tn lyns en> = <yn7 Tn* en> . (2.10)

In general, we find

ff)/ = (x", enrj), 2.11)

for0 < j < M — 1. In the next proposition, we show that if {Tn*_1 en—j} is bounded
in norm for 0 < j < M — 1, then {oe,(Z"_)j} is a member of £2(N).

In order to avoid notational complexity, hereafter we assume that the entries of T
are real numbers.

Proposition 2.1 For M € N fixed, let T be a 2M + 1 diagonal operator defined as
in (2.1). Suppose that T, is invertible for all n and that there exist constants K; > 0
such that ‘ T,

n*_len_.," <Kjforallnand0 < j <M — 1. Then {afl'?j} € (2(N) for
0<j<M-—1, where ot,(l"_)j is defined in (2.11).

Proof Lety = Y 2, Bie; € (N If y, = >, Biei, then from (2.10) it follows
that

n
o =38 <e,~, Tn*_len> . 2.12)

Using relation (2.6) we can write

oM = Zﬂl< .. —(brer + -+ bp—1e4—1) + e >
dy — (u,/ybn—M +-+ uyllbn—l)

In other words, a(") Z ﬂ’ L — 24, where B, = u,, Mpy + -+ u,llb,,,l —d,.
Then

-1

] < Z Bibil , 1Bl

2 1B, 1B
By the given hypothesis, e, | < Ko for all n. Then, from (2.6), it follows that
1+b+---+b2_, < KiB2. (2.13)
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14

Using Lemma 4.2 in [10], and taking » = 8§, we show that

|bi c
< PV
1Byl = (n—i—1D*

where C is a constant and 1 < i < n — 1. Therefore

|a(n)| <C Z _|1181_ 1)4 ||,3n|

8 11| 1al
<CZ n—l—1)4+CZ n—z—1)4+|Bn|'

71

— : n—1 1 2
For i ST, n—t—lzTandson_i_l fm

1

i 18] 5] 1B
o |<2CZ 1)4+CZ—(n—1—1)4+|n|'

By using the Cauchy Schwarz inequality, we deduce

el 1/2

2

D B | B
() ) E E
|Oln | < (I’l—l)4 ||}’||z 1 +C (n—l—1)4+ | B, |

i=1

D — 112 : ;
|:(n )] Iyl +C Z Ié " | B
i>%

<
-1 2 (n—i—1* " |Byl

1 8] Bl
_O< 7/2) +CZ,,;, =i — D% B
I>T

Consider P < n < N. We have

2
1Bil |Bn
—+
P;N l§:| (I’l—l—l)4 | By |
2
_ 1Bil Iﬂ,, 1B | 1Bl
ngX;N l.;;("—i—l)“ B " l;(n—l—1)4|B|
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Thus

PP |1Bir l1Bis |
Z | Z Z (n—11—1)14(n2—12—1)4

P<n<N P<n<N

i1,ip>" 2
B2 16il 1Bl 1
+ + —_ + —
e Z (n—i— D4 B, MZ<N n’
l>T =
1 |Bi |Bnl
2 i P L B
+ Z n7/2 Z ((n—i—1)4+ |Bn|
P<n<N i>%
> 1B 1B
[ —ip = D*n —ip — *
i1,ip>" 2
P<n<N
|Bal? |Bi | Bnl 1
+ Z |n|2 Z n—l—1)4|B|+ Z n’
P<n<N "; P<n<N
P§n<N
|Bi |Bnl
2 . 2.14
+ Z n7/2 Z ((n—l—1)4+|Bn| ( )
P<n<N

Further from (2.13), W < Ko Therefore

|Bal?
> ﬁsK& > 1BulP =0,
n

P<n<N

as P,N > ooand ) n% — 0 as P, N — oo. Now, consider the sum
P<n<N

Z |,3i| |Bnl < Ko Z Iﬂi!lﬁ;ll _
(n—i—D*[B,| =i
i>1= >
P<n<N P<n<N
By the Cauchy-Schwarz inequality, we get

Z Z |Bill Bnl
n—i—_1Dn*
P<n<Nl>n 1 (n i 1)

W Birkhauser
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2 172 12
1Bil
| X | X m > AP
P<n<N i>"2;1 P<n<N
1
2
1Biy 118, |
<
| X Tt veononr| e
i, 12>"2l
P<n<N
1
2
B, 1> + 1B |2
< .
= = =i —Dim— = | e
i1, 12>”2
P<n<N
Now
3 1Bir*
(n—ir—D*n —ir — D*
n—1
i1,ip> =
P<n<N
1 1
2
< P .
- Z 1B Z (i —i1 — D* Z (n —ip — 1)*
P<ii<N ir>11 n>ip

Since {8;} € ¢*(N), from (2.14) and the inequality 2ab < a” + b? it follows that
{a\”} € €2(N). We now show that {¢\" |} € £2(N). From (2.11) we have

r(tn)l = > €n— 1 Z’Bl <elv n*ilen—1>« (2.15)

Let T en 1 =cre1+---+cu—1e5—1. Then

-1 M 1 T
U:Tn*flen—l = (07 e ’05 U, _pm> e 7un7])(cla e acn—l)

M 1
=Cp—MUy_p T U, Cp—1.

Further let D, = ¢,—pu™ ,, + -+ u)_c,_1 and A, = d, — U;,“Tn*:} L*. Then,
using (2.5) and (2.9), we can write

C+Dh1

*
T, en—1=

Cnl+ nbnl

Dn

Ay

) Birkhauser
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Thus by (2.15)

D,b D,b,_ D
,(1")1 = Z.Bl <ela (Cl + A, 1) +- L+ (Cn—l + nAn l)en—l - A_n€n>
n n
_Zﬂl (Cl ) ,Bn
Ay

So, & | < 3} )ﬁ (cl n D"”')‘ +1Ba1 | 22] . Since ‘ Tn*_]en_lu < K, forall n,
we obtain
D, b 2 Dyby—y : |Dn|2 2
_ < K7. 2.16
et | e e b T < K] (2.16)

Also¢? +---+c2_ | < K3.Leth; , = c¢;Ay + Dyb;. Then

n

—1

(n) Z

=1

Dy,

Anl’

ﬁl i,n

+ [Bnl

Furthermore, since the sequence {A, } is bounded below, we can write 1 4 h%’n +--+
h2

P K?2||A,|1?, for some constant K. Now, we employ Lemma 4.2 in [10] and,

proceeding as before, it can be shown that {a(n) } € £2(N). In a similar fashion, we
can show that {er" } € £2(N) for 0 < j < M — 1. o

Now we are in a position to prove our main result.

3 The main result

Theorem 3.1 Let T be a 2M + 1 diagonal operator defined by (2.1). Suppose that Ty,
is invertible for all n and that there exist constants K; such that H T, Loy || < K| for
all0 <1 <M — 1andn.Ify is in the range of T, then the solution of the operator
equation Tx =y can be obtained as the limit of the solutions x" of the operator
equation Tyx" = Yy, in the norm topology. In particular T is one-one. In addition,

nflen_IH < Kl/forallnandOSZS M—1,

if there exist constants K l/ such that ‘

then T is onto and hence invertible.
Proof Let y € R(T), where R(T) denotes the range of operator 7. Let Tx = y.
We write x = Y 2 aiei,xy = Y i e and y, = P,y. Then we have

(Tu(xn), en) = atn_pl® ;4 -+ an_1l}, | +ctndy,. Onthe other hand (T (x), e,) =

W Birkhauser
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M J M J ¢
ijl Op—jlty,_; + andy + Zj:l oz,,+jln+j. Then we write for large n

M

T, (xy) + Zan—&-kuﬁen = Yn-
k=1

As n — 00,x, — x. Further {u’,‘,} is a bounded sequence, {o,4x} € £2(N) and
|| Tn_len || < Ko which show that Tn_lyn — x. In particular if 7x = 0, then y = 0
which in turn implies that y, = P,y = 0. Hence Tn’1 v, = 0, which shows that x = 0.
Thus T is one-one.

We now prove that T is onto. Let y € H. Then y = 3 72, Bie; with 352 |81 <
oo. We write y, = Z?: 1 Biei. Since each T, is onto there exists x" € H, such that
T,x" = y,, we can write x" = aje; + --- + ajje,. Further T (x") = o Te; + - - - +
a) Tey, from which it follows that

M

T(") = Ty(x") + o)yt et +-+a) Y L, ent)- (3.1)
j=1

So T (x™) and T, (x™) differ only by the terms “;lfMle%lenJrl +--+al Zjuzl l,{ﬂ»
en+j. Hence

726" = TGM|* < K2 (I _pya P+ e ) = 0
by Proposition 2.1. Now, if we show that {x"} is a Cauchy sequence in H, then there
exists x € H such that x” — x in H. Since T is continuous 7 (x") — T(x) and in
the limit 7' (x"*) and 7},(x™) coincide by (3.1). Also
y= lim y, = lim T,,(x") = lim T(x") =T (x),
n—oo n—oo n—oo
showing that T is onto. O

Lemma 3.2 {x"} is a Cauchy sequence.

Proof Consider x"t! — x" = n_+11 Vol — Tn_—i-ll T,11x". We know that x" = offey +
-+ 4+ aje,. Hence

M 1
T (") = T (") + gy lpgrenst + -+ ol yenyr

So
T (x™) =y, +a M e+ +all e
n+1 = n n—M+1tn4+16n+1 n‘n1€n+1-
Therefore
n+1 n_op—1 —1 n M —1 nil —1
x -X _Tn+ly”+] - Tn+1yn - OlnfMJrlanrl Tn+le”+1 - ananrl Tn+len+1'

) Birkhauser
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Let y = Z?i] lBiei9 then Yo+l — Yn = an-Flen—FI ThuS T 1(yn+1 yn) —
Bus1 T, en+1. Hence

n+1
x —x" = = Pnt1T, +1en+1 n—M—i—lanrl T,, +le”+1 T nln+l T,, —He”‘H

_ nyl -1
= (ﬂnJrl Oy M+1ln+1 Ty, n+1> Tn+le”+]'

For P > N

P N n M —1
X=X = Z (13"+1 - an7M+lln+1 - anln+1> Tn+le"+1'
N<n<P
Lety, = (,8,,+1 — aZfMHlﬁl — ln+1) . Since {8,} € Ez(N) and by Propo-

sition 2.1 {o" ;} € ?(N) for 0 <[ < M — 1,5, € ¢*(N). Then x” — xV =
ZN§n<P Y Tnjrllenﬂ. Using (2.4), we deduce

1
—1
Tn+1en+1 = E_ (arer + -+ + anen — ent1),

n+1
1
where E = . Thus
ntl lﬁ](1)1+17M+"‘+l,1+|an_dn+]
n+1 Qe
(At}
xF =N = ¥Yn )
En—H
N<n<P i=1
where a,+1 = —1. We seta; = 0 fori > n + 1. Hence
S Y me
" g .
i=1 N<n<P n+l
Therefore
o 2
2 [V 1V, |
== X g 3D el
i=1 |N<n<P i—1 nino | n|+1|| n2+1|
N<np,ny<P
ni+1
Z |Vn1||Vn2| Z 2
nino |En1+l||En2+l|
N<ni,np<P

By the given assumptions, |7, 'e, | < Ko for all n implies

ni+1

Z a; = K() n1+1)

i=1

W Birkhauser
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Then
HXP_XNH < 2K2 Z [V 1Yy || Eny+1]
ni<n |En2+1|
E
=2K(%Z|Vn||2+2K§ Z |J/n|||)l’;n2|| n|+1|‘
n ni<ny | 112+l|

. ¥y 1Y || Eny 1] (I P+ ) | Eny 11
Consider the sum, an<n2 % < Zn1<n2 ~1 |E:22+1| 171 Now we

can use the same technique as in Proposition 2.1, to prove that
o ]
as P, N — oo, establishing that {x"} is a Cauchy sequence. O
4 A verifiable condition for the invertibility of a tridiagonal operator
on (2(N)
The tridiagonal operator 7' can be written as

Tey =die; + lher
Tey =up_1ep—1 +dpey +lppr1en401 n > 2.

In particular,

Cdyu; 0 0--- 0 0
Ldu 0-- 0 0
0 53dius-—- 0 0

“dp—1 Up—1
ln dn |

Here we can write U,, = u,,_1e,_1, L, = l,,ezfl. Recall from Section 1

. [Tn__ll Un O]T —€n [”n—lTn__llen—l O]T — €n

T e, ~ = — (4.1)
" LuT, Uy —dy  laug_rel T\ et —dy
LetR,_1 = eg 1 Tnill en—1. Hence we obtain the recurrence for R,,, given by
1
Ry Vn>2. 4.2)

B lyup_ 1Ry — dy

) Birkhauser
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Proposition 4.1 Let {d,}, {u,} and {l,,} be bounded sequences, bounded from above

by d, u and c respectively. Let my be a number satisfying 0 < mg < 12, my < -

uc
such that |R,, R,—1| < mg for all n. Then {” Tn_len “} is bounded.

T
Proof We can write Tn_len =R, ([uann_ll en_1 0] — en> .So

—1,
T, e,

en IH

Again we can use the recursive relation (4.2) to infer

‘ ’ <[un 2T, Zen 2. O]T—en1>

In other words

T le,

n

< [Rul + |Rp||utn—1]

|77 en]| = 1Ru1 4+ IR Rl 11+ 1R Rl 2] | T en o)
Continuing this way, we obtain
_ |[Rn—1] - |Ro||un—1|lun—2| - - - uz|
77| < 1Rl (1+|Rn_1||un_1|+---+ . PR :
Then
n—2
‘ Tn_len < |R,]| (1 + mou + mou’ +m(2)u3 +m(2)u4 +-- 4+ my? u”_2>
< |R,,|(1+m0u2+m%u4+~--)+m0u+m%u3+~-~
_ 1 2 2 4
= |Ry| — + mou(l + mou” +mgu™ + - --)
1 —mou
1
= (mou + |R,|) ———.
(mo | n|)1—m0u2
. dy
Since |R,R,—1| < mo, |R,| < W But |, ||uy—1] < uc and mg < u—lc
Hence || Tn_le,, || < (mou + T=mouc ) Tomon? showing that {7, en} is bounded in
norm. O

In the next result, we address the question “how the entries d,,, u,, [,, can be choosen
so that |R, R, +1| < mg for all n”.

(I4+molunly1)(A=molup—1ln]) L
Theorem 4.2 If |d,d, 11| > o —2molts 1 T,D , where 0 < mg < -, Mo <

ﬁ, u, ¢ are upper bounds of {u,} and {1}, respectively, then { || Tn_le,, ||} is bounded.
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mqo V n. Recall R, =
1 —
dr—hbui Ry —

Proof By Proposition 4.1, we need to show that R, R,
1
Inun—1Rp—1—dy

. We observe the following R = e T e = zand Ry =

~IA

di _ detTy . . _ detT,—; oy e
Tdh-hin = Gl By induction we want to show that R,, = qe, . Assume that it is
true for n = k. In other words,

detT_y
B detT},
Consider
R 1

k1= 57—~

di1 — I 1ug Ry
1 detT;

di1 — leprug dzglﬁl dys+1detTy — Iy qupdetTy_g

By the recurrence relation detTyy| = diy1detTy — lyyjurdetTi—1 (see (1) in [10]),
we conclude that

detTy

(We can also obtain this expression for R, using Cramer’s rule). We now prove by
induction |R, R,+1| < moV n.Forn =1

1

RiR))=—-—-—.
R R>| dids —ml,

Assume that |R, R,,—1| < mg. In order to show that |R, R,,+1| < mq, we consider

|detTy v 1| = |dpy1detTy, — Ly yuydetT, 1]
= |dpy1{dndetT, | — lyu,1detT, 2} — Ly yuydetT, 1]
= |dpdpy1detT, | — dyq1lyuy—1detT, o — Ly u,detT, 1]
> |dpdyrdetT, 1| — |dyy1lyup—1detT, o] — |l pu,detT, 1]
= |dpdn+1lldetTy—1| — |ln+1upl|detT,—1| — |dp+1lnun—1detT, 2]

Dividing by |detT,_1| on both sides, we get

|detT, 41| |detT,, |
———— > |dpdnt1| — lnt1un| — |dut1lntn—1l .
|detT),—1 | |detT),—1|
1 Ru—1
= —— < — <
As R, TR |R,R,—1] < mg, we have ‘lnun—an—l_dn) < myg. In other

words, |R,_1| < mold,| + mol|l,un—1]||R,—1] from which it follows that

IRy_1| < mo|dy|
n— — - .
1 —mol|lpuy—1]

) Birkhauser



14 Page 16 0f 28 S.H. Kulkarni et al.

Th— Th—
As R, = dett, L Ry = detT, , we have R, R,y = det_n1' Thus

n— detT, det7),+1 — detTy4
|detZ} 41| mo|dy|
T = ldndnpr| = llnprun| = ldnprlptn—1 | | ——————
|detT}, 1| 1 —mo|lyun—1]
mo|lptty—1|
= ldndn1| | 1 — ——————— | — llny1unl
1 — mollyup—1|
1
z _—
mo
which shows that | R, R,+1| < mg, proving our assertion. O

Corollary 4.3 Let T be the tridiagonal operator with diagonal entries {d,} and off
diagonal entries 1 . If the sequence {d,} satisfies |d,d,+1]| > %’2‘10) for some mg
satisfying 0 < mo < % Then {| T, e, ||} is bounded.

Proof Take u, = [,, = 1 in Theorem 4.2. O

Example 4.1 Letu, =1, = 1 foralln € N and

1, if nis odd,
dn = . .

10, if n is even.
1— 2
Let mg = %. Then sz"m = 7.5, and we have |d,d,+1| = 10 > 7.5. Then,
from Corollary 4.3, it follows that {Tn_le,,} is bounded in norm. Since 7,* = T,,, the
sequence {||Tn”‘_I en ||} is also bounded. This leads to the invertibility of 7" (Theorem
3.1).

Example 4.2 Letu, =2, I, =3, foralln € N and

4, if n is odd,
dn = . .
19, if n is even.

— 1 (1=6mo)(14+6mo)
Let moy = 18" Then Tmo(—12mg)

ch’ moy < ﬁ Then, from Proposition 4.1, it follows that |R, R,+1| < 11_8‘ From

Theorem 4.2 it follows that { || Tn_le,, || } is bounded. Since 7, = T;,, we have || Tn*_1 enll
is also bounded. This leads to the invertibility of 7.

= 72, and we have |d,d,+1| =76 > 72, my <

Example 4.3 Letu, =1, = 1, forall n € N and

n, if n is odd,
dn =1 1o

1, if nis even.

2
Let mgp = 4—11. Then ﬁ = 7.5 and clearly |d,d, 1| = 10 > 7.5. Then, from
Corollary 4.3, it follows that {7, 'e, } is bounded in norm. This leads to the invertibility
of T.
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5 E;(tension to the invertibility of a (2M + 1) diagonal operator on
£4(2)

Let V = £2(Z) denote a separable Hilbert space. Let {---,e_,,, - ,e_1, eo,
ey, -, ey, -} be the standard orhonormal basis for V. Let
Vo = Span{e—n’ cee, €0, ,en}

and P, : V — V,, C V be the orthogonal projection on V,,. Let T be a 2M + 1
diagonal operator defined on V =~ ¢*(Z) by

M M
Te, = Zu}/l_jen—j +dye, + Zli+je’1+j’ (5.1
Jj=1 j=1

where {d,}, {l,{}, and {u{;} are bounded sequences of complex numbers and 7, =
P, T P,. Then

M .
— J .
The n=d ne_n+ E U_pqj€—n+j»
j=1
M M
J J .
T.ei = E Uj_jeij + die; + E ll.+j.e,-+j, —n+1<i<n-—1,
j=1 j=1

M

T,e, = Zli—jen—j + dye,.
j=1
LetS, : V — spanf{e_p41, -+ ,e,}and Q, : V. — spanfe_,, - -- , e_p+1}. In other
words,
-?_n ul, . uM M() 0O -~ 0 07
l—n+1 d_n+1 /S R 0 0 O
Tn = ’
o - 0 M 2.1 diy 0
. o -~ 0o o M ...p2 [l aq |
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Cdo u) - ud 0 0 0 07
1l di ul ult 0 0 0
Sl’l= k)
0 -0 IM - 2, 1,151 dnl,l 0
LO -0 0 M ...z il 4,
rd, u, - uM 0 0 0 07
ll—n+1 dpt1 ”1—n+1 "'”¥n+1 0 0 0
Qn:
o - 0 M ... P20 ad,o0
2
L 0 - 0 0 B 1 ody

Let T,x™ = y,, x™ = a(_",ze_,, + -+ oc(()")eo +--+ oz,(ln)en. Then for [, (x,(ﬁ)l =

(x("), en_l) and agﬂ = (x (ON e_n+1) . With these notations, we are in a position to

state our main results.
Proposition 5.1 Let T be a 2M + 1 diagonal operator defined by (5.1). Suppose that
0, and S, are invertible for all n and that there exist constants Ll] and le such

that S;fflen_l H < Ll], ‘Q;k;le_,hq H < le for0 <1 < M —1, then {&!_,} and
fo", ) € 2.

Theorem 5.2 Let T be a 2M + 1 diagonal operator defined by (5.1). Suppose that
T., Sy and Q,, are invertible for all n and that there exist constants K ll and K 12 such
that ||Tn_le,,_1|| < K}, Tn_le_,,_HH < Kz,for all0 <l <M—1andn.Ify
belongs to the range of T, then the solution of the operator equation Tx = y can be

obtained as the limit of the solutions x™ of the operator equation T,x ™ = Yny, i the
n

norm topology. In particular T is one-one. In addition, if {u,ﬂ}, {l,{ } are bounded from

above and from below and there exist constant L le such that || Sy - en—i H < Ll],
H Q,’iile_,hq H < le for0 <1 <M — 1. Then T is onto and hence invertible.

The proof of Proposition 5.1 and Theorem 5.2 follow along similar lines as in the case
of tridiagonal operator proved in [6].
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Now our aim is to extend the verifiable criterion which was discussed in Sect. 4 to
doubly infinite tridiagonal operator.

5.1 A verifiable criterion for a doubly infinite tridiagonal operators

Towards this end, let V = ¢2(Z). Let {e, : n € Z} be the standard orthonormal basis
for V. Let T be a tridiagonal operator on V defined by

Te, =up—1ep—1 +dpey +Ilpr1€p41.
Let

Vi =span{e, :n=1,2,...},
V_ =5span{e, :n =—1,-2,...},
Vo = span{ep}.

Then V = V_@ Vo@D V4. Each vector x = Y 2 aje; € V can be written

uniquely as x = x_+xpeg+xy, wherex_ = Zi_=1—oo ajei €V, xy =Y 2 a6 €

V,. Let P_ denote the orthogonal projection onto V_ and P, denote the orthogonal
projection onto V.. Then x_ = P_(x) and x4 = P.(x). Let S = Py, , O =
P_T, .

Theorem 5.3 Suppose Q and S are invertible and satisfy the condition

do — lou_q <Qile_1, e_1> —uoly <Silel, €1> # 0.

Then the operator T is invertible and the equation Tx = y can be solved uniquely for
ally e V.

Proof Let y € V. The operator equation
Tx=y 5.2)

can be written in a block matrix form as follows

U_1 X_ y—
01y dougO--- || xo | =1 o
L Xt Y+

O 0 S
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In other words,

Ox_ +xou—1e—1 =y,
lox—1 + doxo + uox1 = yo,
Lixoer + Sx4 = y4.

Given Q and S invertible. Then (5.3) and (5.5) imply

xo = Q0 (- — xou_te_y),

Xy = S_l(y+ — l1xpey).
Note that

X—1= (X,€_1> = (X_,€_1> s

= <Q_1y—, €—1> — XoU~—| (Q_le—l, 6—1>-
Similarly

x1={x,e_1) = (x4, e1),

= <571y+, €1> — xoly <Q71€1, €1>~

Substituting these values of x_; and x; in (5.4), we obtain

lo <Q_1y7, 671> — lpxou—1 <Q‘1671,671) + doxo

+ uo<S*]y+, e1> — ugpxoly <S*Iel, €1> = 0.

In other words,

xo(—lou—; <Q_1€—1, 6—1> + do — uoly <S_161,61>)
= (0 —lo<Q_1y—,e—1)

—uo<571y+7€1>)-

(5.3)
(5.4)
(5.5)

(5.6)
(5.7)

(5.8)

(5.9)

(5.10)

By the given hypothesis the value of xo can be obtained from (5.10). Using the value

of x¢, the terms, x_ and x4 can be obtained from (5.6) and (5.7).

m}

Example 5.1 Letu, = 1, n %2 —1,0and [, = 1, n # 0,1 for all n € Z. For all

ne 7\ {0}, let

1, if n is odd,
dn = . .
10, if n is even.
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Letu_; =1 = é—lt, uo = lp = land dy = 7. Let mg = 4—1‘. In this case, we

have § = Q. It follows from Example 4.1 that § is invertible. And from the proof

Siten|| < (moc + HZJW) 17é0c2 from which it turns out that

of Proposition 4.1, |

|S~'er| < 11. The latter leads to

|do — lou—1 <Q_]€—1, 6—1) — uol; <S_161, 61>|
> ldol = llou-1]1 (@1, e-1) | = ol {$er,en)|

> [dol — lou11 | e | = ot 5 1e:

22
=7——>0.
4

Thus the hypothesis of Theorem 5.3 is satisfied. Hence T is invertible.

5.2 A verifiable criterion for a doubly infinite penta diagonal operators and
extensions

Now consider a bounded linear operator 7' : V — V defined by
T(en) = wp—2ep—2 +up—1en—1 +dnen + lny1ent1 + knyoenia.

Consider the operator equation 7x = y for some given y € V. We can write

00
y = Z Bnen = y— + Boyo + y+-

n=—oo

Note that, fori < —3, T(¢;) € V_. Therefore

Qei) = P_T(ei) =T (ei),
T(e—2) =w-_ge_4+u_ze_3+dsen+Il_1e_1+koeo = Q(e—2) + koeo,
T(e—1) =w_3e_3+u_se_r+d_je_1+lpey + kiej
= Q(e_1) +loeo + kiey.

Since x_ = Zi§_3 ajej +a_se, +a_je_j, we have

T(x-)=Q(x_) 4+ a_rkpeg + a_1lpeg + a_1kie;. (5.11)
Furthermore,

T(ep) = w_oe_p+u_re_1+doey + lie1 + krer. (5.12)
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Also, note that for i > 3, T (¢;) € V4. As a consequence

S(e;) = PyT(ej) =T(ei),
T(e1) =w_1e—1 +upeo +dier +her +kzes = w_re_1 + upep + S(ey),
T (e2) = woeg + urer + drep + lzez + kgeq = woep + S(ez).

Thus
T(xy)=Sxy)+ojw_te_1 +ajupeo + axwoep. (5.13)

Making use of (5.11), (5.12), and (5.13), the equation 7 (x) = y becomes

T(x)=Tx-+aoeo +x4) =T (x-) + 0T (eo) + T (x4)
= Q(x-) +a_zkoeo + a—_1lpep + a_1kie;
+ agw_oe_» + agu_je_1 + apdpey + aplier + apkaer
+ S(x4) +ayw_1e—1 + ajupen + axwoen
= y— + Poeo + y+.

Equating the components of V_, Vj and V on both sides of the above equation, we
get the following equations:

O(x-)+aow_oe o +ogu_1e_| +ajw_re_| =y_, (5.14)
a_2ko +a_1ly + apdo + aug 4+ axwo = Po, (5.15)
S(x4) +a_1kier + aplie] + aokaer = y4. (5.16)

Next we assume that Q and S are invertible. Then multiplying (5.14) by 0~! and
(5.16) by S~!, we obtain the following equations,

xo =0 " (yo) —aow_20 N (e—2) —apu_107 " (e—1) —arw_107 " (e—1),
(5.17)

xp =8y —asiki ST er) — aoli ST (er) — aoka ST (e2). (5.18)

Next note that

a1 =(x,e_1) = (x_,e_1)
= (07 ' (yo), e1) —apw_2(Q N(e—2), e—1) — agu_1{Q " (e_1), e_1)
—ajw_1(Q e 1), e_y). (5.19)

W Birkhauser



Solution of an infinite band matrix equation Page230f28 14

Similarly,

ap = (x,e-2) = (x_,e-2)
= (Q 7' (y2), e—2) — apw_2{Q N (e_2), e—2) — agu_1{Q " (e_1), e_2)
—aw_1(Q " (e—1), e_2). (5.20)

Also,

ap = (x,e1) = (xq,e1)

= (S7' (). e1) — a1k (ST (e er) — ol (ST (er), er)

—apka (S~ (e2), e1). (5.21)
ay = (x,ez2) = (x4, e2)

= (ST (y4). e2) — a1k (ST (en), e2) — ol 1 (ST (e1). €2)

— aok2 (S (e2), €2). (5.22)

Equations (5.19), (5.20), (5.21), and (5.22) along with (5.15) form a system of 5 equa-
tions in 5 unknowns, namely, o;, —2 <i <2.Lety;; = (Q_l(e,j), e_i), &j=
(S -1 (ej), e;). Then we can rewrite the above mentioned system of equation in sim-
plified form as,

kooe—p + lpor—1 + doag + upo; + woaa = Po, (5.23)
a1+ (Wooyiz + u_ 1y + worynen = (07 (y-). e—1), (5.24)
oo+ (wooyn +u_1ya)a0+w_ryer = (07 (yo), e n), (5.25)

a1 + kst + (1811 + kad12)ag = (ST (y4), e1), (5.26)
@+ kidaia—t + (1821 + kad)ag = (S7' (v4), e2). (5.27)

Now let M be the matrix of coefficients of the above system of equations (5.23),
(5.24), (5.25), (5.26), and (5.27). Note that M is of order 5 x 5. Suppose M is
invertible. Then once y is known, the right hand side of all equations is known.(Recall
that we have assumed that Q and S are invertible.) Hence this system has a unique
solution o;, — 2 < i < 2. Once these values are known, then x_ and x4 can
be determined uniquely from equations (5.17) and (5.18), respectively. Hence x is
uniquely determined. In other words, 7 is invertible.

Theorem 5.4 Suppose that Q, S are invertible and that the matrix M defined as above
is also invertible. Then the operator T is invertible and the equation Tx = y can be
solved uniquely forall y € V.

Remark 5.5 The above theorem and its proof can be extended to a (2M + 1)-diagonal

operator. The matrix M in that case will be of the order 2M + 1) x 2M + 1). The
calculations to obtain that matrix M may be lengthy and involved.
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6 An application to a sampling problem

In modern digital data processing, mathematical sampling theory plays an important
role. Mathematical sampling theory deals with sampling and reconstruction of a signal
(or an image) from its sample points. The signals formally belong to an appropriate
subclass of L2(R). We refer to the work of Butzer and Stens [14] for the classical
historical review of sampling theory. After the foundation of the theory of wavelets
and multi resolution analysis [26, 27], the sampling problems have been considered
in a subclass of L2(R), namely shift-invariant spaces. We refer to some papers in the
literature which involve sampling and reconstruction in a shift-invariant space see e.g.
[1-5, 19, 20, 25, 28, 29, 33, 34].
Let f € L'(R). Then the Fourier transform fof f is defined by

&) = / F(X)e ™ dx g.e. & € R.
R

Then f € Co(R), the class of continuous functions vanishing at co. Further, if f €
L'(R), and fe L'(R), then the following inversion formula is valid

fx) = / F(E)P™EdE g x € R.
R

The Fourier transform initially defined for LY(R) N L3(R) can be extended to an
isometric isomorphism of L2(R) onto itself.

Definition 6.1 A closed subspace E of L?(R) is called a shift-invariant space if Ty¢ €
E, forevery ¢ € E and k € 7Z, where T is a translation operator defined as Ty ¢ (x) :=
¢(x —k) forall x € R. For¢ € L*>(R), span{T;¢ : k € Z} is called the shift-invariant
space generated by ¢ and is denoted by V (¢).

Definition 6.2 A Riesz basis for a separable Hilbert space H is a family of the form
{Uer}i2,, where {e;}72 | is an orthonormal basis for H and U : H — H is a bounded
invertible operator.

Theorem 6.3 Let ¢ € L2(R). Then {Ty¢ : k € 7} is a Riesz basis for V (¢) if and only
if there exist A, B > 0 such that

0<A=<Gy()<B<ooaefekR,

where Gg(§) = Y |$(& + k)[>.

keZ
For more details we refer to [15].

Definition 6.4 The Wiener amalgam space W (C, £') is defined as

W(C,t') = {f €CR): ng[gx” |f(x+n)| < oo} .
nez ’
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A closed subspace E of L>(R) is said to be a reproducing kernel Hilbert space if for
all x € R there exists a function K, € E such that

J&x)=(f.K:) V feE.

The function K (x, y) = Ky (y) = (K o K y) is called the reproducing kernel of E.

Ifp € W(C, £')suchthat {Ti¢ : k € Z}is aRieszbasis for V (¢) then each function
in V(¢) is continuous and V (¢) is a reproducing kernel Hilbert space. In particular if
¢ is a continuous function with compact support, then V (¢) is a reproducing kernel
Hilbert space. The reproducing kernel is given by

K(x,y) =Y ¢x—hd(y -k

keZ

where {qu; : k € Z} is the dual Riesz basis of {Ty¢ : k € Z}.

Definition 6.5 A set X = {x, : n € 7Z} is said to be a stable set of sampling for a
closed subspace V of L2(R) if there exist constants 0 < m < M < oo such that

1/2
ml| fll2 < (Z |f<xn>|2) < M| £l

nez

forevery f € V.

Let U be the infinite matrix with entries U;; = ¢ (x; — j), i, j € Z. Then it is well
known in the literature that X = {x; : j € Z} is a stable set of sampling for V (¢) if
and only if there exist A, B > 0 such that

Alell?,

2 2
< |Ucl%y < Blel?

() () (Z)

for every ¢ € £2(Z).
The study of invertibility of an infinite band matrix leads to the following applica-
tion.

Theorem 6.6 Let ¢ be a continuous function having support in [-1,1] such that {Ty¢ :
k € Z} forms a Riesz basis for V(¢). Let X = {xj : j € Z}. Let U = [Ujjl; jez =
(¢ (xi — ))]i, jez be an infinite matrix associated with ¢. Suppose U*U has the form

0o 0 o0

U-10
-+ 0Up-1 Upo Up1 0--- |,
Uo
0] 0 S
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where Q and S satisfy the hypothesis of Theorem 5.3. Then X is a stable set of sampling
for V().

Proof Since supp(¢) C [—1, 1], it can be easily shown that U*U is tridiagonal. Then
it follows from Theorem 5.3 that U*U is invertible. This means U is bounded above
and below from which it follows that X is a stable set of sampling for V (¢). O

Remark 6.7 For supp(¢) C [—M, M], it can be easily shown that U*U is QM + 1)
diagonal. Then it follows from Theorem 5.4 and Remark 5.5 that X is a stable set of
sampling for V (¢).

We shall illustrate the Theorem 6.6 with the following
Example 6.1 Define

—99x + 34, x €[0, 1/3],
K x €[1/3,2/3],
o) = —6x +6, xe[2/3,1], 6.1

0 x> 1.

Extendgp on[—1,0]as¢(x) = ¢(—x). Thensupp¢p < [—1, 1] with¢p(£1) = 0. Now
we want to show that {Tx ¢ : k € Z} forms a Riesz basis for V (¢). By Poission summa-
tion formula, Gy (&) = co+2 Z,fil ci cos(2mkE), where ¢ = ffooo ¢ (x)p(x+k)dx.
Then co = [, (@ (x))2dx = 267.11, ¢; = ['| ¢(x)p(x + 1)dx = 8.72. Therefore
Gy(§) = 267.11 + 17.44 cos(2n€). Clearly 249 < G4(§) < 285. Hence, from
Theorem 6.3, it follows that {7 ¢ : k € Z} forms a Riesz basis for V (¢).

Let X = {%j :jeZ}y. ThenU; ; = ¢(%i — j). Using straightforward computa-
tions, we obtain

22 20
U*U = 0211642 0
0 2 220

We note that U*U is tridiagonal and it is not a diagonally dominant matrix. We
consider the matrix S in U*U with mo = . The entries of S satisfy the hypothesis
of Theorem 4.2. Hence S is invertible. Further (U*U)_; _; = (U*U); j Vi, j € N.
In other words S = Q. We also have (U*U)y = 1164, (U*U)10 = (U*U)_19 =
(U*U)o1 = (U*U)o-1 =2and (U*U)o; = (U*U);p = 0 for all i, j. This satisfies
the hypothesis of Theorem 5.3. Thus U*U is invertible and X is a stable set of sampling
for V(¢).
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