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Abstract
The aim of this paper is to obtain the solution of the operator equation T x = y
for an infinite band matrix T using its finite-dimensional truncations Tnxn = yn .
Several verifiable conditions are given to obtain the invertibility of T . An application
in connection with a stable set of sampling for functions belonging to a shift-invariant
space is discussed along with an illustration.

Keywords Band matrices · Finite dimensional truncations · Operator equations ·
Tridiagonal operator
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1 Introduction

In 2006, Balasubramanian et al. [10] studied the solution of a tridiagonal operator
equation T x = y on �2(N) using its finite sections Tnxn = yn . They showed that

if
{∥∥T−1

n en
∥∥} and

{
‖T ∗−1

n en‖
}
are bounded, then T is invertible and the solution

can be obtained as a limit in the norm topology of the solutions of its finite sections.
The main aim of this paper is to obtain a similar result for an infinite band matrix,
so generalizing the findings in [10]. In numerical analysis, solutions of band matrix
equations play a crucial role when one has to obtain numerical solution of ordinary

Communicated by Ngai-Ching Wong.

B R. Radha
radharam@iitm.ac.in

S. H. Kulkarni
shk@iitpkd.ac.in

K. Sarvesh
sarvesh.kmc4@gmail.com

1 Department of Mathematics, Indian Institute of Technology Palakkad, Palakkad 678557, India

2 Department of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s43037-022-00238-x&domain=pdf


14 Page 2 of 28 S. H. Kulkarni et al.

and partial differential equations in connection with boundary value problems and
numerical approximation methods of local type. These matrices arise while looking at
the approximate solutions of such boundary value problems by local approximation
methods such as finite differences, finite elements, isogeometric analysis etc. Some
of the references in this direction are [9, 13, 17, 21, 31, 32]. Further regarding the
invertibility of an operator, it is well known that if T ∈ B(H) whereH is a separable
Hilbert space, has a strict row and column dominance property then T is invertible.
Further, an infinite version of Gerschgorin theorem gives the information about the
spectrum of T . In fact, let T = (αi j ), ri = ∑

j �=i |αi j |, r
′
i = ∑

k �=i |αki |. If Di =
B(αi i , ri ) and D

′
i = B(αi i , r

′
i ), then Sp(T ) ⊂ (⋃i Di ∪ D

′
i

)
.

The method used in [10] makes use of determinants of Tn and their recurrence
relations. In fact, the expressions for T−1

n en and T ∗−1

n en were written in terms of
determinants of Tn, Tn−1, · · · and T1. This was a strong restriction as it dealt with the
specific nature of tridiagonal structure and hence the result could not be generalized to
infinite band matrices with bandwidth 2M + 1 for an arbitrary M . Our new approach
totally avoids the expressions in terms of determinants. In fact, we obtain the expres-
sions for T−1

n en− j and T ∗−1

n en− j , 0 ≤ j ≤ M − 1 using matrix equations. Before we
mention about the contents of the paper, we shall give a brief introduction to the finite
section method. We refer to [11, 16, 24, 30] in this connection.

LetH be a separable Hilbert space with an orthonormal basis {en : n ∈ N}. LetHn

denote the span of {e1, . . . , en}. Let T ∈ B(H), the class of bounded linear operators
on H. Let Tn denote Tn = PnT|Hn

where Pn denotes the orthogonal projection of H
onto Hn . The n × n matrix Tn is called a finite section or a Galerkin approximation
of T . In general in order to study the analytic properties of T one can first study
the analytic properties of Tn and extend to the whole of T . This method is called
finite section method or Galerkin method. The finite section method has been used in
several contexts such as variational problems [18, 22], solutions of operator equations
involving convolution operators, Toeplitz operators and block Toeplitz operators [11,
12, 23]. Another important problem is the study of spectrum of a self adjoint operator
T on a Hilbert space using its finite sections. Arveson [7, 8] showed that only if the
given operator T is viewed as an element of an appropriate C∗ algebra, one can see
the precise nature of limit of the eigenvalue distributions: the limit is associated with
a tracial state on T .

One of the important aims of the paper [10] was to obtain sufficient conditions
using the entries of T explicitly in order to show the boundedness of {∥∥T−1

n en
∥∥} and

{‖T ∗−1

n en‖}. A complicated theorem (Theorem 6.1 in [10] was proved and several
sufficient conditions were obtained as corollaries. Recently in [6] Antony Selvan and
Radha extended the study to a tridiagonal operator T on �2(Z) in obtaining the solution
of T x = y using finite sections. They also proved that if T is a tridiagonal operator on
�2(Z) which, is strictly row and column dominant except for a finite number of rows
and columns, then T is invertible.

The aim of this paper is to study the invertibility of infinite band matrices T and
solutions of their operator equations when T ∈ B(�2(N)) and T ∈ B(�2(Z)) as well.
We also wish to obtain the solution of such operator equations T x = y using its finite-
dimensional truncations Tnxn = yn . Furthermore in the case of a tridiagonal operator,
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we give a verifiable condition to get the boundedness of {∥∥T−1
n en

∥∥} and {‖T ∗−1

n en‖}
without using the complicated theorem (Theorem 6.1 in [10]) for the invertibility of T .

In particular, we prove that if the product of consecutive diagonal elements in absolute
value, |dndn+1|, is large enough, then we can obtain the invertibility of T . In other
words, even if infinitely many rows and columns lack diagonal dominance condition,
we can establish the invertibility of T . We also extend the verifiability criterion for a
doubly infinite tridiagonal operator.We illustrate the verifiability conditions by simple
numerical examples. Furthermore, we extend the verifiability conditions for doubly
infinite pentadiagonal operators which clearly show that the theory can be extended
to a general (2M + 1) diagonal operator.

In the final part of the paper, an application in connection with a stable set of
sampling for functions belonging to a shift-invariant space is discussed along with an
illustration.

2 Matrices with bandwidth 2M+1 on �2(N)

Let H denote a separable Hilbert space with orthonormal basis {en : n ∈ N}. Let Hn

denote the linear span of {e1, . . . , en} and Pn, the orthogonal projection of H onto
Hn . Let T : H → H be a 2M + 1 diagonal operator defined as

T en =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n−1∑

j=1
u j
n− j en− j + dnen +

M∑

j=1
l jn+ j en+ j , n ≤ M,

M∑

j=1
u j
n− j en− j + dnen +

M∑

j=1
l jn+ j en+ j , n > M,

(2.1)

where {dn}, {l jn } and {u j
n} for j = 1, . . . , M are bounded sequences of complex

numbers. Further, we assume that the sequence {dn} is bounded from below by a
number k0 > 0. Then Tn : Hn → Hn can be defined as

Tn = PnT Pn = PnT|Hn
.

It is clear that matrix of Tn with respect to the orthonormal basis {e1, . . . , en} consists
of first n rows and n colums of T . The matrices Tn are known as finite sections or
Galerkin approximations of T . In matrix notation Tn (for large n) can be written as

Tn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

d1 u11 u21 · · · uM
1 0 0 · · · 0

l12 d2 u12 · · · uM−1
2 uM

2 0 · · · 0
l23 l13 d3 u13 · · · uM−1

3 uM
3 · · · 0

...
. . .

. . .
. . .

. . .
. . .

. . . · · · ...

. . .
. . .

. . .
. . .

. . . · · · ...

0 · · · 0 lMn−1 lM−1
n−1 · · · l1n−1 dn−1 u1n−1

0 · · · 0 0 lMn · · · l2n l1n dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.
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We can also write Tn(for large n) as

Tn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0
...

Tn−1 uM
n−M
...

u1n−1
0 · · · lMn · · · l1n dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=
[
Tn−1 Un

Ln dn

]
,

where Un = (0, . . . , 0, uM
n−M , . . . , u1n−1)

T , Ln = (0, . . . , 0, lMn , . . . , l1n).

Weassume that each Tn is invertible. Our first aim is to calculate T−1
n en and T ∗−1

n en .
Let Tn x̄ = en, where x̄ = (x1, . . . , xn−1, xn)T . We can write x̄ = (x̄n−1, xn)T ,

x̄n−1 = (x1, . . . , xn−1)
T , 0n−1 is the n − 1 dimensional vector of zeros. With the

above notation we can write Tn x̄ = en as

[
Tn−1 Un

Ln dn

] [
x̄n−1
xn

]
=
[
0n−1
1

]
,

which reduces to the system of equations

Tn−1x̄n−1 +Unxn = 0n−1 (2.2)

Ln x̄n−1 + dnxn = 1. (2.3)

Since Tn is invertible for each n, from (2.2) we obtain x̄n−1 = −T−1
n−1Unxn . After

substituting this value of x̄n−1 in (2.3) we get

xn = 1

dn − LnT
−1
n−1Un

and x̄n−1 = −T−1
n−1Un

dn − LnT
−1
n−1Un

.

Let T−1
n−1Un = a1e1 + · · · + an−1en−1. Then LnT

−1
n−1Un = lMn an−M + · · · + l1nan−1.

Therefore

T−1
n en = x̄ = −(a1e1 + · · · + an−1en−1) + en

dn − (lMn an−M + · · · + l1nan−1)

=

⎡

⎢⎢⎢
⎣

−a1
...

−an−1
1

⎤

⎥⎥⎥
⎦

1

dn − (lMn an−M + · · · + l1nan−1)
. (2.4)

In a similar fashion we can calculate T ∗−1

n en . We have

T ∗
n =

[
T ∗
n−1 L∗

n
U∗
n dn

]
,
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where L∗
n,U

∗
n denote the adjoint of Ln and Un respectively. Now, considering the

expression

T ∗−1

n−1L
∗
n = b1e1 + · · · + bn−1en−1, (2.5)

as in the case of T−1
n en, we can show that

T ∗−1

n en = −(b1e1 + · · · + bn−1en−1) + en
dn − (uM

n bn−M + · · · + u1nbn−1)
. (2.6)

Now we wish to calculate T−1
n en−1. Again let Tn x̄ = en−1. For x̄ =

[
x̄n−1
xn

]
, we

have

[
Tn−1 Un

Ln dn

] [
x̄n−1
xn

]
=

⎡

⎢⎢⎢
⎣

0
...

1
0

⎤

⎥⎥⎥
⎦

=
[
ẽn−1
0

]
,

which reduces to

Tn−1x̄n−1 +Unxn = ẽn−1, (2.7)

Ln x̄n−1 + dnxn = 0, (2.8)

where ẽn−1 is the n − 1 dimensional unit vector, more precisely,

ẽn−1( j) =
{
1 if j = n − 1,

0 otherwise.

Once again, solving, we end up with

T−1
n en−1 =

⎡

⎢
⎣
T−1
n−1ẽn−1 + (T−1

n−1Un)LnT
−1
n−1ẽn−1

dn−LnT
−1
n−1Un

− LnT
−1
n−1ẽn−1

dn−LnT
−1
n−1Un

⎤

⎥
⎦ .

Similarly, we obtain

T ∗−1

n en−1 =

⎡

⎢⎢
⎣

T ∗−1

n−1ẽn−1 + (T ∗−1
n−1 L∗

n)U
∗
n T

∗−1
n−1 ẽn−1

dn−U∗
n T

∗−1
n−1 L∗

n

− U∗
n T

∗−1
n−1 ẽn−1

dn−U∗
n T

∗−1
n−1 L∗

n

⎤

⎥⎥
⎦ . (2.9)
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Similarly, we can calculate T ∗−1

n en−2, . . . , T ∗−1

n en−M and T−1
n en−2, . . . , T−1

n en−M .

Now, let Tnxn = yn and xn = α
(n)
1 e1 + · · · + α

(n)
n en . Then

α(n)
n = 〈xn, en

〉 =
〈
T−1
n yn, en

〉
=
〈
yn, T

∗−1

n en
〉
. (2.10)

In general, we find

α
(n)
n− j = 〈xn, en− j

〉
, (2.11)

for 0 ≤ j ≤ M − 1. In the next proposition, we show that if {T ∗−1

n en− j } is bounded
in norm for 0 ≤ j ≤ M − 1, then {α(n)

n− j } is a member of �2(N).

In order to avoid notational complexity, hereafter we assume that the entries of T
are real numbers.

Proposition 2.1 For M ∈ N fixed, let T be a 2M + 1 diagonal operator defined as
in (2.1). Suppose that Tn is invertible for all n and that there exist constants K j > 0

such that
∥∥∥T ∗−1

n en− j

∥∥∥ ≤ K j for all n and 0 ≤ j ≤ M − 1. Then {α(n)
n− j } ∈ �2(N) for

0 ≤ j ≤ M − 1, where α
(n)
n− j is defined in (2.11).

Proof Let y = ∑∞
i=1 βi ei ∈ �2(N). If yn = ∑n

i=1 βi ei , then from (2.10) it follows
that

α(n)
n =

n∑

i=1

βi

〈
ei , T

∗−1

n en
〉
. (2.12)

Using relation (2.6) we can write

α(n)
n =

n∑

i=1

βi

〈
ei ,

−(b1e1 + · · · + bn−1en−1) + en
dn − (uM

n bn−M + · · · + u1nbn−1)

〉
.

In other words, α(n)
n =

n−1∑

i=1

βi bi
Bn

− βn
Bn

, where Bn = uM
n bn−M + · · · + u1nbn−1 − dn .

Then

|α(n)
n | ≤

n−1∑

i=1

|βi bi |
|Bn| + |βn|

|Bn| .

By the given hypothesis,
∥∥∥T ∗−1

n en
∥∥∥ ≤ K0 for all n. Then, from (2.6), it follows that

1 + b21 + · · · + b2n−1 ≤ K 2
0 B

2
n . (2.13)
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Using Lemma 4.2 in [10], and taking r = 8, we show that

|bi |
|Bn| ≤ C

(n − i − 1)4
,

where C is a constant and 1 ≤ i ≤ n − 1. Therefore

|α(n)
n | ≤ C

n−1∑

i=1

|βi |
(n − i − 1)4

+ |βn|
|Bn|

≤ C

n−1
2∑

i=1

|βi |
(n − i − 1)4

+ C
∑

i> n−1
2

|βi |
(n − i − 1)4

+ |βn|
|Bn| .

For i ≤ n−1
2 , n − i − 1 ≥ n−1

2 and so 1
n−i−1 ≤ 2

n−1 .

|α(n)
n | ≤ 24C

n−1
2∑

i=1

|βi |
(n − 1)4

+ C
∑

i> n−1
2

|βi |
(n − i − 1)4

+ |βn|
|Bn| .

By using the Cauchy Schwarz inequality, we deduce

|α(n)
n | ≤ D

(n − 1)4

⎡

⎢
⎣‖y‖�2

⎛

⎜
⎝

n−1
2∑

i=1

1

⎞

⎟
⎠

1/2⎤

⎥
⎦+ C

∑

i> n−1
2

|βi |
(n − i − 1)4

+ |βn|
|Bn|

≤ D

(n − 1)4

[
(n − 1)

2

]1/2
‖y‖�2 + C

∑

i> n−1
2

|βi |
(n − i − 1)4

+ |βn|
|Bn|

= O
(

1

n7/2

)
+ C

∑

i> n−1
2

|βi |
(n − i − 1)4

+ |βn|
|Bn| .

Consider P ≤ n < N . We have

∑

P≤n<N

⎛

⎜
⎝
∑

i> n−1
2

|βi |
(n − i − 1)4

+ |βn|
|Bn|

⎞

⎟
⎠

2

=
∑

P≤n<N

⎡

⎢
⎣

⎛

⎜
⎝
∑

i> n−1
2

|βi |
(n − i − 1)4

⎞

⎟
⎠

2

+ |βn|2
|Bn|2 + 2

∑

i> n−1
2

|βi |
(n − i − 1)4

|βn|
|Bn|

⎤

⎥
⎦ .
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Thus

∑

P≤n<N

|α(n)
n |2 = C

∑

P≤n<N

⎡

⎢
⎣

∑

i1,i2>
n−1
2

|βi1 ||βi2 |
(n − i1 − 1)4(n − i2 − 1)4

+ |βn|2
|Bn|2 +

∑

i> n−1
2

|βi |
(n − i − 1)4

|βn|
|Bn|

⎤

⎥
⎦+

∑

P≤n<N

1

n7

+ 2
∑

P≤n<N

⎛

⎜
⎝

1

n7/2
∑

i> n−1
2

( |βi |
(n − i − 1)4

+ |βn|
|Bn|

)
⎞

⎟
⎠

= C
∑

i1,i2>
n−1
2

P≤n<N

|βi1 ||βi2 |
(n − i1 − 1)4(n − i2 − 1)4

+
∑

P≤n<N

|βn|2
|Bn|2 +

∑

i> n−1
2

P≤n<N

|βi |
(n − i − 1)4

|βn|
|Bn| +

∑

P<n<N

1

n7

+ 2
∑

P≤n<N

⎛

⎜
⎝

1

n7/2
∑

i> n−1
2

( |βi |
(n − i − 1)4

+ |βn|
|Bn|

)
⎞

⎟
⎠ . (2.14)

Further from (2.13), 1
|Bn |2 ≤ K 2

0 . Therefore

∑

P≤n<N

|βn|2
|Bn|2 ≤ K 2

0

∑

P≤n<N

|βn|2 → 0,

as P, N → ∞ and
∑

P≤n<N

1
n7

→ 0 as P, N → ∞. Now, consider the sum

∑

i> n−1
2

P≤n<N

|βi |
(n − i − 1)4

|βn|
|Bn| ≤ K0

∑

i> n−1
2

P≤n<N

|βi ||βn|
(n − i − 1)4

.

By the Cauchy–Schwarz inequality, we get

∑

P≤n<N

∑

i> n−1
2

|βi ||βn|
(n − i − 1)4
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≤
⎛

⎜
⎝
∑

P<n<N

⎛

⎜
⎝
∑

i> n−1
2

|βi |
(n − i − 1)4

⎞

⎟
⎠

2⎞

⎟
⎠

1/2⎛

⎝
∑

P≤n<N

|βn|2
⎞

⎠

1/2

≤

⎛

⎜⎜⎜⎜
⎝

∑

i1,i2>
n−1
2

P≤n<N

|βi1 ||βi2 |
(n − i1 − 1)4(n − i2 − 1)4

⎞

⎟⎟⎟⎟
⎠

1
2

‖y‖�2

≤

⎛

⎜⎜⎜⎜
⎝

∑

i1,i2>
n−1
2

P≤n<N

|βi1 |2 + |βi2 |2
(n − i1 − 1)4(n − i2 − 1)4

⎞

⎟⎟⎟⎟
⎠

1
2

‖y‖�2 .

Now

∑

i1,i2>
n−1
2

P≤n<N

|βi1 |2
(n − i1 − 1)4(n − i2 − 1)4

≤
∑

P≤i1<N

|βi1 |2
∑

i2>i1

1

(i2 − i1 − 1)4
∑

n>i2

1

(n − i2 − 1)4
.

Since {βi } ∈ �2(N), from (2.14) and the inequality 2ab ≤ a2 + b2 it follows that
{α(n)

n } ∈ �2(N). We now show that {α(n)
n−1} ∈ �2(N). From (2.11) we have

α
(n)
n−1 = 〈xn, en−1

〉 =
n∑

i=1

βi

〈
ei , T

∗−1

n en−1

〉
. (2.15)

Let T ∗−1

n−1ẽn−1 = c1e1 + · · · + cn−1en−1. Then

U∗
n T

∗−1

n−1ẽn−1 = (0, · · · , 0, uM
n−M , · · · , u1n−1)(c1, · · · , cn−1)

T

= cn−MuM
n−M + · · · + u1n−1cn−1.

Further let Dn = cn−MuM
n−M + · · · + u1n−1cn−1 and An = dn − U∗

n T
∗−1

n−1L
∗
n . Then,

using (2.5) and (2.9), we can write

T ∗−1

n en−1 =

⎡

⎢⎢⎢⎢
⎣

c1 + Dnb1
An

...

cn−1 + Dnbn−1
An

− Dn
An

⎤

⎥⎥⎥⎥
⎦

.
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Thus by (2.15)

α
(n)
n−1 =

n∑

i=1

βi

〈
ei ,

(
c1 + Dnb1

An

)
e1 + · · · ,+

(
cn−1 + Dnbn−1

An

)
en−1 − Dn

An
en

〉

=
n−1∑

i=1

βi

(
ci + Dnbi

An

)
− βn

Dn

An
.

So, |α(n)
n−1| ≤∑n−1

i=1

∣∣∣βi

(
ci + Dnbi

An

)∣∣∣+ |βn|
∣∣∣ Dn
An

∣∣∣ . Since
∥∥∥T ∗−1

n en−1

∥∥∥ ≤ K1 for all n,

we obtain

∣∣∣∣c1 + Dnb1
An

∣∣∣∣

2

+ · · · +
∣∣∣∣cn−1 + Dnbn−1

An

∣∣∣∣

2

+ |Dn|2
|An|2 ≤ K 2

1 . (2.16)

Also c21 + · · · + c2n−1 ≤ K 2
0 . Let hi,n = ci An + Dnbi . Then

|α(n)
n−1| ≤

n−1∑

i=1

∣∣∣∣
βi hi,n
An

∣∣∣∣+ |βn|
∣∣∣∣
Dn

An

∣∣∣∣ .

Furthermore, since the sequence {An} is bounded below, we can write 1+h21,n +· · ·+
h2n−1,n ≤ K 2‖An‖2, for some constant K . Now, we employ Lemma 4.2 in [10] and,

proceeding as before, it can be shown that {α(n)
n−1} ∈ �2(N). In a similar fashion, we

can show that {α(n)
n− j } ∈ �2(N) for 0 ≤ j ≤ M − 1. 
�

Now we are in a position to prove our main result.

3 Themain result

Theorem 3.1 Let T be a 2M + 1 diagonal operator defined by (2.1). Suppose that Tn
is invertible for all n and that there exist constants Kl such that

∥∥T−1
n en−l

∥∥ ≤ Kl for
all 0 ≤ l ≤ M − 1 and n. If y is in the range of T , then the solution of the operator
equation T x = y can be obtained as the limit of the solutions xn of the operator
equation Tnxn = yn|Hn in the norm topology. In particular T is one-one. In addition,

if there exist constants K
′
l such that

∥∥∥T ∗−1

n en−l

∥∥∥ ≤ K
′
l for all n and 0 ≤ l ≤ M − 1,

then T is onto and hence invertible.

Proof Let y ∈ R(T ), where R(T ) denotes the range of operator T . Let T x = y.
We write x = ∑∞

i=1 αi ei , xn = ∑n
i=1 αi ei and yn = Pn y. Then we have

〈Tn(xn), en〉 = αn−MlMn+M +· · ·+αn−1l1n+1 +αndn . On the other hand 〈T (x), en〉 =
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∑M
j=1 αn− j u

j
n− j + αndn +∑M

j=1 αn+ j l
j
n+ j . Then we write for large n

Tn(xn) +
M∑

k=1

αn+ku
k
nen = yn .

As n → ∞, xn → x . Further {ukn} is a bounded sequence, {αn+k} ∈ �2(N) and∥∥T−1
n en

∥∥ ≤ K0 which show that T−1
n yn → x . In particular if T x = 0, then y = 0

which in turn implies that yn = Pn y = 0.Hence T−1
n yn = 0,which shows that x = 0.

Thus T is one-one.
We now prove that T is onto. Let y ∈ H. Then y =∑∞

i=1 βi ei with
∑∞

i=1 |βi |2 <

∞. We write yn = ∑n
i=1 βi ei . Since each Tn is onto there exists xn ∈ Hn such that

Tnxn = yn, we can write xn = αn
1e1 + · · · + αn

n en . Further T (xn) = αn
1T e1 + · · · +

αn
n T en, from which it follows that

T (xn) = Tn(x
n) + αn

n−M+1l
M
n+1en+1 + · · · + αn

n

M∑

j=1

l jn+ j en+ j . (3.1)

So T (xn) and Tn(xn) differ only by the terms αn
n−M+1l

M
n+1en+1 +· · ·+αn

n
∑M

j=1 l
j
n+ j

en+ j . Hence

∥∥Tn(xn) − T (xn)
∥∥2 ≤ K 2

(
|αn

n−M+1|2 + · · · + |αn
n |2
)

→ 0

by Proposition 2.1. Now, if we show that {xn} is a Cauchy sequence inH, then there
exists x ∈ H such that xn → x in H. Since T is continuous T (xn) → T (x) and in
the limit T (xn) and Tn(xn) coincide by (3.1). Also

y = lim
n→∞ yn = lim

n→∞ Tn(x
n) = lim

n→∞ T (xn) = T (x),

showing that T is onto. 
�
Lemma 3.2 {xn} is a Cauchy sequence.
Proof Consider xn+1 − xn = T−1

n+1yn+1 − T−1
n+1Tn+1xn . We know that xn = αn

1e1 +
· · · + αn

n en . Hence

Tn+1(x
n) = Tn(x

n) + αn
n−M+1l

M
n+1en+1 + · · · + αn

n l
1
n+1en+1.

So

Tn+1(x
n) = yn + αn

n−M+1l
M
n+1en+1 + · · · + αn

n l
1
n+1en+1.

Therefore

xn+1−xn=T−1
n+1yn+1 − T−1

n+1yn − αn
n−M+1l

M
n+1T

−1
n+1en+1 − · · · − αn

n l
1
n+1T

−1
n+1en+1.
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Let y = ∑∞
i=1 βi ei , then yn+1 − yn = βn+1en+1. Thus T−1

n+1(yn+1 − yn) =
βn+1T

−1
n+1en+1. Hence

xn+1 − xn = βn+1T
−1
n+1en+1 − αn

n−M+1l
M
n+1T

−1
n+1en+1 − · · · − αn

n l
1
n+1T

−1
n+1en+1

=
(
βn+1 − αn

n−M+1l
M
n+1 − · · · − αn

n l
1
n+1

)
T−1
n+1en+1.

For P > N

x P − xN =
∑

N≤n<P

(
βn+1 − αn

n−M+1l
M
n+1 − · · · − αn

n l
1
n+1

)
T−1
n+1en+1.

Let γn = (βn+1 − αn
n−M+1l

M
n+1 − · · · − αn

n l
1
n+1

)
. Since {βn} ∈ �2(N) and by Propo-

sition 2.1 {αn
n−l} ∈ �2(N) for 0 ≤ l ≤ M − 1, γn ∈ �2(N). Then x P − xN =

∑
N≤n<P γnT

−1
n+1en+1. Using (2.4), we deduce

T−1
n+1en+1 = 1

En+1
(a1e1 + · · · + anen − en+1) ,

where En+1 = 1
lMn+1an+1−M+···+l1n+1an−dn+1

. Thus

x P − xN =
∑

N≤n<P

γn

[
n+1∑

i=1

ai ei
En+1

]

,

where an+1 = −1. We set ai = 0 for i > n + 1. Hence

x P − xN =
∞∑

i=1

∑

N≤n<P

γn
ai ei
En+1

.

Therefore

∥∥∥x P − xN
∥∥∥
2 =

∞∑

i=1

∣∣∣∣∣∣

∑

N≤n<P

γn

En+1

∣∣∣∣∣∣

2

a2i ≤
∞∑

i=1

∑

n1,n2
N≤n1,n2<P

|γn1 ||γn2 |
|En1+1||En2+1|a

2
i

=
∑

n1,n2
N≤n1,n2<P

|γn1 ||γn2 |
|En1+1||En2+1|

n1+1∑

i=1

a2i .

By the given assumptions,
∥∥T−1

n en
∥∥ ≤ K0 for all n implies

n1+1∑

i=1

a2i ≤ K 2
0

(
En1+1

)2
.
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Then

∥∥∥x P − xN
∥∥∥ ≤ 2K 2

0

∑

n1≤n2

|γn1 ||γn2 ||En1+1|
|En2+1|

= 2K 2
0

∑

n1

|γn1 |2 + 2K 2
0

∑

n1<n2

|γn1 ||γn2 ||En1+1|
|En2+1| .

Consider the sum,
∑

n1<n2
|γn1 ||γn2 |∣∣En1+1

∣∣
∣∣En2+1

∣∣ ≤ ∑
n1<n2

(|γn1 |2+|γn2 |2)∣∣En1+1
∣∣

∣∣En2+1
∣∣ . Now we

can use the same technique as in Proposition 2.1, to prove that

∥∥∥x P − xN
∥∥∥→ 0

as P, N → ∞, establishing that {xn} is a Cauchy sequence. 
�

4 A verifiable condition for the invertibility of a tridiagonal operator
on �2(N)

The tridiagonal operator T can be written as

T e1 = d1e1 + l2e2
T en = un−1en−1 + dnen + ln+1en+1 n ≥ 2.

In particular,

Tn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

d1 u1 0 0 · · · 0 0
l2 d2 u2 0 · · · 0 0
0 l3 d3 u3 · · · 0 0
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 0 · · · dn−1 un−1
0 0 0 0 · · · ln dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Here we can write Un = un−1en−1, Ln = lneTn−1. Recall from Section 1

T−1
n en = [T−1

n−1Un 0]T − en

LnT
−1
n−1Un − dn

= [un−1T
−1
n−1en−1 0]T − en

lnun−1eTn−1T
−1
n−1en−1 − dn

. (4.1)

Let Rn−1 = eTn−1T
−1
n−1en−1. Hence we obtain the recurrence for Rn, given by

Rn = 1

lnun−1Rn−1 − dn
∀ n ≥ 2. (4.2)
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Proposition 4.1 Let {dn}, {un} and {ln} be bounded sequences, bounded from above
by d, u and c respectively. Let m0 be a number satisfying 0 < m0 < 1

c2
, m0 < 1

uc

such that |RnRn−1| ≤ m0 for all n. Then
{∥∥T−1

n en
∥∥} is bounded.

Proof We can write T−1
n en = Rn

([
un−1T

−1
n−1en−1 0

]T − en

)
. So

∥∥∥T−1
n en

∥∥∥ ≤ |Rn| + |Rn||un−1|
∥∥∥T−1

n−1en−1

∥∥∥ .

Again we can use the recursive relation (4.2) to infer

∥∥∥T−1
n en

∥∥∥ ≤ |Rn| + |Rn||un−1|
∥∥∥∥Rn−1

([
un−2T

−1
n−2en−2. 0

]T − en−1

)∥∥∥∥ .

In other words
∥∥∥T−1

n en
∥∥∥ ≤ |Rn| + |Rn||Rn−1||un−1| + |Rn||Rn−1||un−1||un−2|

∥∥∥T−1
n−2en−2

∥∥∥ .

Continuing this way, we obtain

∥∥∥T−1
n en

∥∥∥ ≤ |Rn|
(
1 + |Rn−1||un−1| + · · · + |Rn−1| · · · |R2||un−1||un−2| · · · |u2|

d1

)
.

Then

∥∥∥T−1
n en

∥∥∥ ≤ |Rn|
(
1 + m0u + m0u

2 + m2
0u

3 + m2
0u

4 + · · · + m
n−2
2

0 un−2
)

≤ |Rn|
(
1 + m0u

2 + m2
0u

4 + · · ·
)

+ m0u + m2
0u

3 + · · ·

= |Rn|
(

1

1 − m0u2

)
+ m0u(1 + m0u

2 + m2
0u

4 + · · · )

= (m0u + |Rn|) 1

1 − m0u2
.

Since |RnRn−1| ≤ m0, |Rn| ≤ |dn |
1−m0|ln ||un−1| . But |ln||un−1| ≤ uc and m0 < 1

uc .

Hence
∥∥T−1

n en
∥∥ ≤

(
m0u + d

1−m0uc

)
1

1−m0u2
, showing that {T−1

n en} is bounded in
norm. 
�
In the next result, we address the question “how the entries dn, un, ln can be choosen
so that |RnRn+1| ≤ m0 for all n”.

Theorem 4.2 If |dndn+1| ≥ (1+m0|unln+1|)(1−m0|un−1ln |)
m0(1−2m0|un−1ln |) , where 0 < m0 < 1

c2
, m0 <

1
2uc , u, c are upper bounds of {un} and {ln}, respectively, then {∥∥T−1

n en
∥∥} is bounded.
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Proof By Proposition 4.1, we need to show that RnRn+1 ≤ m0 ∀ n. Recall Rn =
1

lnun−1Rn−1−dn
.We observe the following R1 = eT1 T

−1
1 e1 = 1

d1
and R2 = 1

d2−l2u1R1
=

d1
d1d2−l2u1

= detT1
detT2

. By induction we want to show that Rn = detTn−1
detTn

. Assume that it is
true for n = k. In other words,

Rk = detTk−1

detTk
.

Consider

Rk+1 = 1

dk+1 − lk+1uk Rk

= 1

dk+1 − lk+1uk
detTk−1
detTk

= detTk
dk+1detTk − lk+1ukdetTk−1

.

By the recurrence relation detTk+1 = dk+1detTk − lk+1ukdetTk−1 (see (1) in [10]),
we conclude that

Rk+1 = detTk
detTk+1

.

(We can also obtain this expression for Rn using Cramer’s rule). We now prove by
induction |RnRn+1| < m0 ∀ n. For n = 1

|R1R2| = 1

d1d2 − u2l1
.

Assume that |RnRn−1| ≤ m0. In order to show that |RnRn+1| < m0, we consider

|detTn+1| = |dn+1detTn − ln+1undetTn−1|
= |dn+1{dndetTn−1 − lnun−1detTn−2} − ln+1undetTn−1|
= |dndn+1detTn−1 − dn+1lnun−1detTn−2 − ln+1undetTn−1|
≥ |dndn+1detTn−1| − |dn+1lnun−1detTn−2| − |ln+1undetTn−1|
= |dndn+1||detTn−1| − |ln+1un||detTn−1| − |dn+1lnun−1detTn−2|.

Dividing by |detTn−1| on both sides, we get

|detTn+1|
|detTn−1| ≥ |dndn+1| − |ln+1un| − |dn+1lnun−1| |detTn−2|

|detTn−1| .

As Rn = 1
lnun−1Rn−1−dn

, |RnRn−1| ≤ m0, we have
∣∣∣ Rn−1
lnun−1Rn−1−dn

∣∣∣ ≤ m0. In other

words, |Rn−1| ≤ m0|dn| + m0|lnun−1||Rn−1| from which it follows that

|Rn−1| ≤ m0|dn|
1 − m0|lnun−1| .
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As Rn = detTn−1
detTn

, Rn+1 = detTn
detTn+1

, we have RnRn+1 = detTn−1
detTn+1

. Thus

|detTn+1|
|detTn−1| ≥ |dndn+1| − |ln+1un| − |dn+1lnun−1|

(
m0|dn|

1 − m0|lnun−1|
)

= |dndn+1|
(
1 − m0|lnun−1|

1 − m0|lnun−1|
)

− |ln+1un|

≥ 1

m0

which shows that |RnRn+1| ≤ m0, proving our assertion. 
�
Corollary 4.3 Let T be the tridiagonal operator with diagonal entries {dn} and off

diagonal entries 1 . If the sequence {dn} satisfies |dndn+1| ≥ 1−m2
0

m0(1−2m0)
for some m0

satisfying 0 < m0 < 1
2 . Then {∥∥T−1

n en
∥∥} is bounded.

Proof Take un = ln = 1 in Theorem 4.2. 
�
Example 4.1 Let un = ln = 1 for all n ∈ N and

dn =
{
1, if n is odd,

10, if n is even.

Let m0 = 1
4 . Then

1−m2
0

m0(1−2m0)
= 7.5, and we have |dndn+1| = 10 > 7.5. Then,

from Corollary 4.3, it follows that {T−1
n en} is bounded in norm. Since T ∗

n = Tn, the

sequence {‖T ∗−1

n en‖} is also bounded. This leads to the invertibility of T (Theorem
3.1).

Example 4.2 Let un = 2, ln = 3, for all n ∈ N and

dn =
{
4, if n is odd,

19, if n is even.

Let m0 = 1
18 . Then

(1−6m0)(1+6m0)
m0(1−12m0)

= 72, and we have |dndn+1| = 76 > 72,m0 <
1
c2

, m0 < 1
2uc . Then, from Proposition 4.1, it follows that |RnRn+1| < 1

18 . From

Theorem 4.2 it follows that {∥∥T−1
n en

∥∥} is bounded. Since T ∗
n = Tn,we have ‖T ∗−1

n en‖
is also bounded. This leads to the invertibility of T .

Example 4.3 Let un = ln = 1, for all n ∈ N and

dn =
{
n, if n is odd,
10
n−1 , if n is even.

Let m0 = 1
4 . Then

1−m2
0

m0(1−2m0)
= 7.5 and clearly |dndn+1| = 10 > 7.5. Then, from

Corollary 4.3, it follows that {T−1
n en} is bounded in norm. This leads to the invertibility

of T .
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5 Extension to the invertibility of a (2M + 1) diagonal operator on
�2(Z)

Let V = �2(Z) denote a separable Hilbert space. Let {· · · , e−n, , · · · , e−1, e0,
e1, · · · , en, · · · } be the standard orhonormal basis for V . Let

Vn = span{e−n, · · · , e0, · · · , en}

and Pn : V → Vn ⊆ V be the orthogonal projection on Vn . Let T be a 2M + 1
diagonal operator defined on V � �2(Z) by

T en =
M∑

j=1

u j
n− j en− j + dnen +

M∑

j=1

l jn+ j en+ j , (5.1)

where {dn}, {l jn }, and {u j
n} are bounded sequences of complex numbers and Tn =

PnT Pn . Then

Tne−n = d−ne−n +
M∑

j=1

u j
−n+ j e−n+ j ,

Tnei =
M∑

j=1

u j
i− j ei− j + di ei +

M∑

j=1

l ji+ j ei+ j , −n + 1 ≤ i ≤ n − 1,

Tnen =
M∑

j=1

l jn− j en− j + dnen .

Let Sn : V → span{e−M+1, · · · , en} and Qn : V → span{e−n, · · · , e−M+1}. In other
words,

Tn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

d−n u1−n · · · uM−n 0 0 · · · 0 0
l1−n+1 d−n+1 u1−n+1 · · · uM−n+1 0 · · · 0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 lMn−1 · · · l2n−1 l
1
n−1 dn−1 0

0 · · · 0 0 lMn · · · l2n l1n dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,
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Sn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

d0 u10 · · · uM
0 0 0 · · · 0 0

l11 d1 u11 · · · uM
1 0 · · · 0 0

. . .
. . .

. . .
. . .

. . . · · · . . .

. . .
. . .

. . .
. . .

. . . · · · . . .

. . .
. . .

. . .
. . .

. . . · · · . . .

. . .
. . .

. . .
. . .

. . . · · · . . .

. . .
. . .

. . .
. . .

. . . · · · . . .

0 · · · 0 lMn−1 · · · l2n−1 l
1
n−1 dn−1 0

0 · · · 0 0 lMn · · · l2n l1n dn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Qn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

d−n u1−n · · · uM−n 0 0 · · · 0 0
l1−n+1 d−n+1 u1−n+1 · · · uM−n+1 0 · · · 0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 lM−1 · · · l2−1 l1−1 d−1 0
0 · · · 0 0 lM0 · · · l20 l10 d0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Let Tnx (n) = yn, x (n) = α
(n)
−ne−n + · · · + α

(n)
0 e0 + · · · + α

(n)
n en . Then for l, α

(n)
n−l =

〈
x (n), en−l

〉
and α

(n)
−n+l = 〈

x (n), e−n+l
〉
. With these notations, we are in a position to

state our main results.

Proposition 5.1 Let T be a 2M + 1 diagonal operator defined by (5.1). Suppose that
Qn and Sn are invertible for all n and that there exist constants L1

l and L2
l such

that
∥∥∥S∗−1

n en−l

∥∥∥ ≤ L1
l ,

∥∥∥Q∗−1

n e−n+l

∥∥∥ ≤ L2
l for 0 ≤ l ≤ M − 1, then {αn

n−l} and
{αn

−n+l} ∈ �2(N).

Theorem 5.2 Let T be a 2M + 1 diagonal operator defined by (5.1). Suppose that
Tn, Sn and Qn are invertible for all n and that there exist constants K 1

l and K 2
l such

that
∥∥T−1

n en−l
∥∥ ≤ K 1

l ,
∥∥T−1

n e−n+l
∥∥ ≤ K 2

l , for all 0 ≤ l ≤ M − 1 and n. If y
belongs to the range of T , then the solution of the operator equation T x = y can be
obtained as the limit of the solutions x (n) of the operator equation Tnx (n) = yn|Hn in the

norm topology. In particular T is one-one. In addition, if {u j
n}, {l jn } are bounded from

above and from below and there exist constant L1
l , L

2
l such that

∥∥∥S∗−1

n en−l

∥∥∥ ≤ L1
l ,∥∥∥Q∗−1

n e−n+l

∥∥∥ ≤ L2
l for 0 ≤ l ≤ M − 1. Then T is onto and hence invertible.

The proof of Proposition 5.1 and Theorem 5.2 follow along similar lines as in the case
of tridiagonal operator proved in [6].
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Now our aim is to extend the verifiable criterion which was discussed in Sect. 4 to
doubly infinite tridiagonal operator.

5.1 A verifiable criterion for a doubly infinite tridiagonal operators

Towards this end, let V = �2(Z). Let {en : n ∈ Z} be the standard orthonormal basis
for V . Let T be a tridiagonal operator on V defined by

T en = un−1en−1 + dnen + ln+1en+1.

Let

V+ = span{en : n = 1, 2, . . .},
V− = span{en : n = −1,−2, . . .},
V0 = span{e0}.

Then V = V−
⊕

V0
⊕

V+. Each vector x = ∑∞
i=−∞ αi ei ∈ V can be written

uniquely as x = x−+x0e0+x+,where x− =∑−1
i=−∞ αi ei ∈ V−, x+ =∑∞

i=1 αi ei ∈
V+. Let P− denote the orthogonal projection onto V− and P+ denote the orthogonal
projection onto V+. Then x− = P−(x) and x+ = P+(x). Let S = P+T|V+ , Q =
P−T|V− .

Theorem 5.3 Suppose Q and S are invertible and satisfy the condition

d0 − l0u−1

〈
Q−1e−1, e−1

〉
− u0l1

〈
S−1e1, e1

〉
�= 0.

Then the operator T is invertible and the equation T x = y can be solved uniquely for
all y ∈ V .

Proof Let y ∈ V . The operator equation

T x = y (5.2)

can be written in a block matrix form as follows

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

...

Q 0 O

· · · 0 l0
u−1
d0
l1

u0 0 · · ·

O 0 S
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎣
x−
x0
x+

⎤

⎦ =
⎡

⎣
y−
y0
y+

⎤

⎦ .
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In other words,

Qx− + x0u−1e−1 = y−, (5.3)

l0x−1 + d0x0 + u0x1 = y0, (5.4)

l1x0e1 + Sx+ = y+. (5.5)

Given Q and S invertible. Then (5.3) and (5.5) imply

x− = Q−1(y− − x0u−1e−1), (5.6)

x+ = S−1(y+ − l1x0e1). (5.7)

Note that

x−1 = 〈x, e−1〉 = 〈x−, e−1〉 ,

=
〈
Q−1y−, e−1

〉
− x0u−1

〈
Q−1e−1, e−1

〉
. (5.8)

Similarly

x1 = 〈x, e−1〉 = 〈x+, e1〉 ,

=
〈
S−1y+, e1

〉
− x0l1

〈
Q−1e1, e1

〉
. (5.9)

Substituting these values of x−1 and x1 in (5.4), we obtain

l0
〈
Q−1y−, e−1

〉
− l0x0u−1

〈
Q−1e−1, e−1

〉
+ d0x0

+ u0
〈
S−1y+, e1

〉
− u0x0l1

〈
S−1e1, e1

〉
= y0.

In other words,

x0(−l0u−1

〈
Q−1e−1, e−1

〉
+ d0 − u0l1

〈
S−1e1, e1

〉
)

= (y0 − l0
〈
Q−1y−, e−1

〉

− u0
〈
S−1y+, e1

〉
). (5.10)

By the given hypothesis the value of x0 can be obtained from (5.10). Using the value
of x0, the terms, x− and x+ can be obtained from (5.6) and (5.7). 
�
Example 5.1 Let un = 1, n �= −1, 0 and ln = 1, n �= 0, 1 for all n ∈ Z. For all
n ∈ Z \ {0}, let

dn =
{
1, if n is odd,

10, if n is even.
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Let u−1 = l1 = 1
4 , u0 = l0 = 1 and d0 = 7. Let m0 = 1

4 . In this case, we
have S = Q. It follows from Example 4.1 that S is invertible. And from the proof

of Proposition 4.1,
∥∥S−1

n en
∥∥ ≤

(
m0c + d

1−m0uc

)
1

1−m0c2
from which it turns out that

∥∥S−1e1
∥∥ ≤ 11. The latter leads to

|d0 − l0u−1

〈
Q−1e−1, e−1

〉
− u0l1

〈
S−1e1, e1

〉
|

≥ |d0| − |l0u−1||
〈
Q−1e−1, e−1

〉
| − |u0l1||

〈
S−1e1, e1

〉
|

≥ |d0| − |l0u−1|
∥∥∥Q−1e−1

∥∥∥− |u0l1||
∥∥∥S−1e1

∥∥∥

= 7 − 22

4
> 0.

Thus the hypothesis of Theorem 5.3 is satisfied. Hence T is invertible.

5.2 A verifiable criterion for a doubly infinite penta diagonal operators and
extensions

Now consider a bounded linear operator T : V → V defined by

T (en) = wn−2en−2 + un−1en−1 + dnen + ln+1en+1 + kn+2en+2.

Consider the operator equation T x = y for some given y ∈ V . We can write

y =
∞∑

n=−∞
βnen = y− + β0y0 + y+.

Note that, for i ≤ −3, T (ei ) ∈ V−. Therefore

Q(ei ) = P−T (ei ) = T (ei ),

T (e−2) = w−4e−4 + u−3e−3 + d−2e−2 + l−1e−1 + k0e0 = Q(e−2) + k0e0,

T (e−1) = w−3e−3 + u−2e−2 + d−1e−1 + l0e0 + k1e1
= Q(e−1) + l0e0 + k1e1.

Since x− =∑i≤−3 αi ei + α−2e2 + α−1e−1, we have

T (x−) = Q(x−) + α−2k0e0 + α−1l0e0 + α−1k1e1. (5.11)

Furthermore,

T (e0) = w−2e−2 + u−1e−1 + d0e0 + l1e1 + k2e2. (5.12)
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Also, note that for i ≥ 3, T (ei ) ∈ V+. As a consequence

S(ei ) = P+T (ei ) = T (ei ),

T (e1) = w−1e−1 + u0e0 + d1e1 + l2e2 + k3e3 = w−1e−1 + u0e0 + S(e1),

T (e2) = w0e0 + u1e1 + d2e2 + l3e3 + k4e4 = w0e0 + S(e2).

Thus

T (x+) = S(x+) + α1w−1e−1 + α1u0e0 + α2w0e0. (5.13)

Making use of (5.11), (5.12), and (5.13), the equation T (x) = y becomes

T (x) = T (x− + α0e0 + x+) = T (x−) + α0T (e0) + T (x+)

= Q(x−) + α−2k0e0 + α−1l0e0 + α−1k1e1
+ α0w−2e−2 + α0u−1e−1 + α0d0e0 + α0l1e1 + α0k2e2
+ S(x+) + α1w−1e−1 + α1u0e0 + α2w0e0
= y− + β0e0 + y+.

Equating the components of V−, V0 and V+ on both sides of the above equation, we
get the following equations:

Q(x−) + α0w−2e−2 + α0u−1e−1 + α1w−1e−1 = y−, (5.14)

α−2k0 + α−1l0 + α0d0 + α1u0 + α2w0 = β0, (5.15)

S(x+) + α−1k1e1 + α0l1e1 + α0k2e2 = y+. (5.16)

Next we assume that Q and S are invertible. Then multiplying (5.14) by Q−1 and
(5.16) by S−1, we obtain the following equations,

x− = Q−1(y−) − α0w−2Q
−1(e−2) − α0u−1Q

−1(e−1) − α1w−1Q
−1(e−1),

(5.17)

x+ = S−1(y+) − α−1k1S
−1(e1) − α0l1S

−1(e1) − α0k2S
−1(e2). (5.18)

Next note that

α−1 = 〈x, e−1〉 = 〈x−, e−1〉
= 〈Q−1(y−), e−1〉 − α0w−2〈Q−1(e−2), e−1〉 − α0u−1〈Q−1(e−1), e−1〉
− α1w−1〈Q−1(e−1), e−1〉. (5.19)
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Similarly,

α−2 = 〈x, e−2〉 = 〈x−, e−2〉
= 〈Q−1(y−), e−2〉 − α0w−2〈Q−1(e−2), e−2〉 − α0u−1〈Q−1(e−1), e−2〉
− α1w−1〈Q−1(e−1), e−2〉. (5.20)

Also,

α1 = 〈x, e1〉 = 〈x+, e1〉
= 〈S−1(y+), e1〉 − α−1k1〈S−1(e1), e1〉 − α0l1〈S−1(e1), e1〉
− α0k2〈S−1(e2), e1〉. (5.21)

α2 = 〈x, e2〉 = 〈x+, e2〉
= 〈S−1(y+), e2〉 − α−1k1〈S−1(e1), e2〉 − α0l1〈S−1(e1), e2〉
− α0k2〈S−1(e2), e2〉. (5.22)

Equations (5.19), (5.20), (5.21), and (5.22) along with (5.15) form a system of 5 equa-
tions in 5 unknowns, namely, αi , − 2 ≤ i ≤ 2. Let γi j = 〈Q−1(e− j ), e−i 〉, δi j =
〈S−1(e j ), ei 〉. Then we can rewrite the above mentioned system of equation in sim-
plified form as,

k0α−2 + l0α−1 + d0α0 + u0α1 + w0α2 = β0, (5.23)

α−1 + (w−2γ12 + u−1γ11)α0 + w−1γ11α1 = 〈Q−1(y−), e−1〉, (5.24)

α−2 + (w−2γ22 + u−1γ21)α0 + w−1γ21α1 = 〈Q−1(y−), e−2〉, (5.25)

α1 + k1δ11α−1 + (l1δ11 + k2δ12)α0 = 〈S−1(y+), e1〉, (5.26)

α2 + k1δ21α−1 + (l1δ21 + k2δ22)α0 = 〈S−1(y+), e2〉. (5.27)

Now let M be the matrix of coefficients of the above system of equations (5.23),
(5.24), (5.25), (5.26), and (5.27). Note that M is of order 5 × 5. Suppose M is
invertible. Then once y is known, the right hand side of all equations is known.(Recall
that we have assumed that Q and S are invertible.) Hence this system has a unique
solution αi , − 2 ≤ i ≤ 2. Once these values are known, then x− and x+ can
be determined uniquely from equations (5.17) and (5.18), respectively. Hence x is
uniquely determined. In other words, T is invertible.

Theorem 5.4 Suppose that Q, S are invertible and that the matrixM defined as above
is also invertible. Then the operator T is invertible and the equation T x = y can be
solved uniquely for all y ∈ V .

Remark 5.5 The above theorem and its proof can be extended to a (2M + 1)-diagonal
operator. The matrix M in that case will be of the order (2M + 1) × (2M + 1). The
calculations to obtain that matrixM may be lengthy and involved.
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6 An application to a sampling problem

In modern digital data processing, mathematical sampling theory plays an important
role.Mathematical sampling theory deals with sampling and reconstruction of a signal
(or an image) from its sample points. The signals formally belong to an appropriate
subclass of L2(R). We refer to the work of Butzer and Stens [14] for the classical
historical review of sampling theory. After the foundation of the theory of wavelets
and multi resolution analysis [26, 27], the sampling problems have been considered
in a subclass of L2(R), namely shift-invariant spaces. We refer to some papers in the
literature which involve sampling and reconstruction in a shift-invariant space see e.g.
[1–5, 19, 20, 25, 28, 29, 33, 34].

Let f ∈ L1(R). Then the Fourier transform f̂ of f is defined by

f̂ (ξ) :=
∫

R

f (x)e−2π i xξdx a.e. ξ ∈ R.

Then f̂ ∈ C0(R), the class of continuous functions vanishing at ∞. Further, if f ∈
L1(R), and f̂ ∈ L1(R), then the following inversion formula is valid

f (x) =
∫

R

f̂ (ξ)e2π i xξdξ a.e. x ∈ R.

The Fourier transform initially defined for L1(R) ∩ L2(R) can be extended to an
isometric isomorphism of L2(R) onto itself.

Definition 6.1 A closed subspace E of L2(R) is called a shift-invariant space if Tkφ ∈
E, for every φ ∈ E and k ∈ Z,where Tk is a translation operator defined as Tkφ(x) :=
φ(x − k) for all x ∈ R. For φ ∈ L2(R), span{Tkφ : k ∈ Z} is called the shift-invariant
space generated by φ and is denoted by V (φ).

Definition 6.2 A Riesz basis for a separable Hilbert space H is a family of the form
{Uek}∞k=1, where {ek}∞k=1 is an orthonormal basis forH andU : H → H is a bounded
invertible operator.

Theorem 6.3 Let φ ∈ Ł2(R). Then {Tkφ : k ∈ Z} is a Riesz basis for V (φ) if and only
if there exist A, B > 0 such that

0 < A ≤ Gφ(ξ) ≤ B < ∞ a.e. ξ ∈ R,

where Gφ(ξ) = ∑

k∈Z
|φ̂(ξ + k)|2.

For more details we refer to [15].

Definition 6.4 The Wiener amalgam space W (C, �1) is defined as

W (C, �1) :=
{

f ∈ C(R) :
∑

n∈Z
max
x∈[0,1] | f (x + n)| < ∞

}

.
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A closed subspace E of L2(R) is said to be a reproducing kernel Hilbert space if for
all x ∈ R there exists a function Kx ∈ E such that

f (x) = 〈 f , Kx 〉 ∀ f ∈ E .

The function K (x, y) = Kx (y) = 〈Kx , Ky
〉
is called the reproducing kernel of E .

Ifφ ∈ W (C, �1) such that {Tkφ : k ∈ Z} is aRiesz basis forV (φ) then each function
in V (φ) is continuous and V (φ) is a reproducing kernel Hilbert space. In particular if
φ is a continuous function with compact support, then V (φ) is a reproducing kernel
Hilbert space. The reproducing kernel is given by

K (x, y) =
∑

k∈Z
φ(x − k)φ̃(y − k)

where {Tk φ̃ : k ∈ Z} is the dual Riesz basis of {Tkφ : k ∈ Z}.
Definition 6.5 A set X = {xn : n ∈ Z} is said to be a stable set of sampling for a
closed subspace V of L2(R) if there exist constants 0 < m ≤ M < ∞ such that

m‖ f ‖2 ≤
(
∑

n∈Z
| f (xn)|2

)1/2

≤ M‖ f ‖2

for every f ∈ V .

Let U be the infinite matrix with entries Ui j = φ(xi − j), i, j ∈ Z. Then it is well
known in the literature that X = {x j : j ∈ Z} is a stable set of sampling for V (φ) if
and only if there exist A, B > 0 such that

A‖c‖2
�2(Z)

≤ ‖Uc‖2
�2(Z)

≤ B‖c‖2
�2(Z)

for every c ∈ �2(Z).

The study of invertibility of an infinite band matrix leads to the following applica-
tion.

Theorem 6.6 Let φ be a continuous function having support in [-1,1] such that {Tkφ :
k ∈ Z} forms a Riesz basis for V (φ). Let X = {x j : j ∈ Z}. Let U = [Ui j ]i, j∈Z =
[φ(xi − j)]i, j∈Z be an infinite matrix associated with φ. Suppose U∗U has the form

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

...

Q 0 O

· · · 0 U0−1

U−10
U00
U10

U01 0 · · ·

O 0 S
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,
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where Q and S satisfy the hypothesis of Theorem 5.3. Then X is a stable set of sampling
for V (φ).

Proof Since supp(φ) ⊂ [−1, 1], it can be easily shown thatU∗U is tridiagonal. Then
it follows from Theorem 5.3 that U∗U is invertible. This means U is bounded above
and below from which it follows that X is a stable set of sampling for V (φ). 
�
Remark 6.7 For supp(φ) ⊂ [−M, M], it can be easily shown that U∗U is (2M + 1)
diagonal. Then it follows from Theorem 5.4 and Remark 5.5 that X is a stable set of
sampling for V (φ).

We shall illustrate the Theorem 6.6 with the following

Example 6.1 Define

φ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−99x + 34, x ∈ [0, 1/3],
3x, x ∈ [1/3, 2/3],
−6x + 6, x ∈ [2/3, 1],
0 x ≥ 1.

(6.1)

Extend φ on [−1, 0] as φ(x) = φ(−x).Then supp φ ⊆ [−1, 1]with φ(±1) = 0.Now
wewant to show that {Tkφ : k ∈ Z} forms a Riesz basis for V (φ).By Poission summa-
tion formula,Gφ(ξ) = c0+2

∑∞
k=1 ck cos(2πkξ),where ck = ∫∞

−∞ φ(x)φ(x+k)dx .

Then c0 = ∫ 1
−1(φ(x))2dx = 267.11, c1 = ∫ 1

−1 φ(x)φ(x + 1)dx = 8.72. Therefore
Gφ(ξ) = 267.11 + 17.44 cos(2πξ). Clearly 249 ≤ Gφ(ξ) ≤ 285. Hence, from
Theorem 6.3, it follows that {Tkφ : k ∈ Z} forms a Riesz basis for V (φ).

Let X = { 23 j : j ∈ Z}. Then Ui, j = φ( 23 i − j). Using straightforward computa-
tions, we obtain

U∗U =

⎡

⎢⎢⎢⎢⎢⎢
⎣

. . .
. . .

. . .

0 2 2 2 0
0 2 1164 2 0

0 2 2 2 0
. . .

. . .
. . .

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

We note that U∗U is tridiagonal and it is not a diagonally dominant matrix. We
consider the matrix S in U∗U with m0 = 1

9 . The entries of S satisfy the hypothesis
of Theorem 4.2. Hence S is invertible. Further (U∗U )−i,− j = (U∗U )i, j ∀ i, j ∈ N.

In other words S = Q. We also have (U∗U )00 = 1164, (U∗U )10 = (U∗U )−10 =
(U∗U )01 = (U∗U )0−1 = 2 and (U∗U )0 j = (U∗U )i0 = 0 for all i, j . This satisfies
the hypothesis of Theorem5.3. ThusU∗U is invertible and X is a stable set of sampling
for V (φ).

Acknowledgements The authors thank the referees for meticulously reading the manuscript and providing
valuable comments and suggestions. Somepart of theworkwas donewhen the second authorwas visiting the
Center ofMathematics, TechnicalUniversityMunich duringOctober 2019 to September 2020. She sincerely
thanks Professor Massimo Fornasier and Professor Peter Massopust, TUM, for their kind invitation and
excellent hospitality for the entire period of visit.



Solution of an infinite band matrix equation Page 27 of 28 14

References

1. Acosta-Reyes, E., Aldroubi, A., Krishtal, I.: On stability of sampling-reconstruction models. Adv.
Comput. Math. 31(1–3), 5–34 (2009)

2. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM
Rev. 43(4), 585–620 (2001)

3. Aldroubi, A., Krishtal, I.: Robustness of sampling and reconstruction and Beurling–Landau-type the-
orems for shift-invariant spaces. Appl. Comput. Harmon. Anal. 20(2), 250–260 (2006)

4. Aldroubi, A., Sun, Q., Tang, W.S.: Nonuniform average sampling and reconstruction in multiply
generated shift-invariant spaces. Constr. Approx. 20(2), 173–189 (2004)

5. Antony Selvan, A., Radha, R.: Sampling and reconstruction in shift-invariant spaces onRd . Ann. Mat.
Pura Appl. (4) 194(6), 1683–1706 (2015)

6. Antony Selvan, A., Radha, R.: Invertibility of a tridiagonal operator with an application to a non-
uniform sampling problem. Linear Multilinear Algebra 65(5), 973–990 (2017)

7. Arveson, W.: C∗-algebras and numerical linear algebra. J. Funct. Anal. 122(2), 333–360 (1994)
8. Arveson, W.: The role of C∗-algebras in infinite-dimensional numerical linear algebra. In: C∗-

Algebras: 1943–1993 (San Antonio, TX, 1993), vol. 167 of Contemp. Math., pp. 114–129. Amer.
Math. Soc., Providence, RI (1994)

9. Axelsson, O., Barker, V.A.: Finite Element Solution of Boundary Value Problems: Theory and Com-
putation. Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL (1984)

10. Balasubramanian, R., Kulkarni, S.H., Radha, R.: Solution of a tridiagonal operator equation. Linear
Algebra Appl. 414(1), 389–405 (2006)

11. Böttcher, A., Silbermann, B.: The finite section method for Toeplitz operators on the quarter-plane
with piecewise continuous symbols. Math. Nachr. 110, 279–291 (1983)

12. Böttcher, A., Silbermann, B.: Analysis of Toeplitz Operators. Springer-Verlag, Berlin (1990)
13. Burden, R.L., Faires, J.D.: Numerical Analysis. Brooks/Cole, Cengage Learning, Boston, MA (2005)
14. Butzer, P.L., Stens, R.L.: Sampling theory for not necessarily band-limited functions: a historical

overview. SIAM Rev. 34(1), 40–53 (1992)
15. Christensen, O.: Frames and Bases. An Introductory Course. Applied and Numerical Harmonic Anal-

ysis. Birkhäuser Boston Inc, Boston, MA (2008)
16. Christensen, O., Strohmer, T.: The finite section method and problems in frame theory. J. Approx.

Theory 133(2), 221–237 (2005)
17. Donatelli, M., Garoni, C., Carla, M., Manni, C., Serra-Capizzano, S., Speleers, H.: Symbol-based

multigrid methods for Galerkin b-spline isogeometric analysis. SIAM J. Numer. Anal. 55(1), 31–62
(2017)

18. Elsgolts, L.: Differential Equations and the Calculus of Variations. Translated from the Russian by
George Yankovsky, Mir Publishers, Moscow (1977)

19. Führ, H., Xian, J.: Relevant sampling in finitely generated shift-invariant spaces. J. Approx. Theory
(2018). https://doi.org/10.1016/j.jat.2018.09.009

20. García,A.G., Pérez-Villalón,G., Portal,A.:Riesz bases in L2(0, 1) related to sampling in shift-invariant
spaces. J. Math. Anal. Appl. 308(2), 703–713 (2005)

21. Garoni, C., Serra-Capizzano, S., Sesana, D.: Spectral analysis and spectral symbol of d-variate Qp
Lagrangian FEM stiffness matrices. SIAM J. Matrix Anal. Appl. 36(3), 1100–1128 (2015)

22. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Revised English Edition Translated and Edited by
Richard A. Silverman. Prentice-Hall Inc., Englewood Cliffs, NJ (1963)

23. Gohberg, I.C., Fel’dman, I.A.: Convolution equations and projection methods for their solution. Amer-
ican Mathematical Society, Providence, RI (1974) (translated from the Russian by F. M. Goldware,
translations of Mathematical Monographs, vol. 41)

24. Gohberg, I., Kaashoek, M.A., Schagen, F.V.: Finite section method for difference equations. In: Linear
Operators and Matrices, vol. 130 Operator Theory: Advances and Applications Book Series, pp. 197–
207. Birkhäuser, Basel (2002)

25. Liu, Y.M., Walter, G.G.: Irregular sampling in wavelet subspaces. J. Fourier Anal. Appl. 2(2), 181–189
(1995)

26. Mallat, S.G.: Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. Am.
Math. Soc. 315(1), 69–87 (1989)

27. Meyer, Y.: Ondelettes et fonctions splines. In: Séminaire sur les équations aux dérivées partielles
1986–1987, pp. Exp. No. VI, 18. École Polytech., Palaiseau (1987)

https://doi.org/10.1016/j.jat.2018.09.009


14 Page 28 of 28 S. H. Kulkarni et al.

28. Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of
L p(Rd ). J. Funct. Anal. 258(7), 2422–2452 (2010)

29. Radha,R., Sarvesh,K., Sivananthan, S.: Sampling and reconstruction in a shift invariant spacewithmul-
tiple generators. Numer. Funct. Anal. Optim. (2018). https://doi.org/10.1080/01630563.2018.1501701

30. Robert, L., Santiago, L.: Finite sections method for Hessenberg matrices. J. Approx. Theory 123(1),
68–88 (2003)

31. Serra Capizzano, S., Tablino Possio, C.: Spectral and structural analysis of high precision finite differ-
ence matrices for elliptic operators. Linear Algebra Appl. 293(1–3), 85–131 (1999)

32. Strikewerda, J.C.: Finite Difference Schemes and Partial Differential Equations. International Thomp-
son Publ., Chapman and Hall, New York (1989)

33. Sun, W., Zhou, X.: Average sampling in spline subspaces. Appl. Math. Lett. 15(2), 233–237 (2002)
34. Sun, Q.: Nonuniform average sampling and reconstruction of signals with finite rate of innovation.

SIAM J. Math. Anal. 38(5):1389–1422 (2006/07)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1080/01630563.2018.1501701

	Solution of an infinite band matrix equation
	Abstract
	1 Introduction
	2 Matrices with bandwidth 2M+1 on ell2(mathbbN)
	3 The main result
	4 A verifiable condition for the invertibility of a tridiagonal operator on ell2(mathbbN)
	5 Extension to the invertibility of a (2M+1) diagonal operator on ell2(mathbbZ)
	5.1 A verifiable criterion for a doubly infinite tridiagonal operators
	5.2 A verifiable criterion for a doubly infinite penta diagonal operators and extensions

	6 An application to a sampling problem
	Acknowledgements
	References




