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Let H,, H, be complex Hilbert spaces afidbe a densely defined closed linear operator from its
domainD(T), a dense subspace Hf,, into H. Let N(T') denote the null space @f andR(T")
denote the range &f.

Recall thatC(T) := D(T) N N(T)* is called thecarrier space ofl" and thereduced minimum
modulus~(T') of T is defined as:

V(T) = nf{[|T(z)[| : = € C(T), ||| = 1}.

Further, we say thdf' attains its reduced minimum modulifishere existsry € C(T) such that
lzol| = 1 and||T(z0)|| = v(T). We discuss some properties of operators that attain reduced
minimum modulus. In particular, the following results are proved.

1. The operatorT’ attains its reduced minimum modulus if and only if its Moore-Penrose
inverseT'" is bounded and attains its norm, that is, there exists H- such that|y| = 1
and|| T = [T (yo)|l-

2. For eache > 0, there exists a bounded operatbsuch that|.S|| < e andT + S attains its
reduced minimum.

Key words : Densely defined operator; closed operator; reduced minimum modulus; minimum
modulus; minimum attaining operator; reduced minimum attaining operator; gap metric; carrier
graph topology; Moore-Penrose inverse.
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1. INTRODUCTION

Let H; and Hy be complex Hilbert spaces affd : H; — H, be a bounded linear operator. We

say 7 to benorm attainingif there existszy € H; such that|zo|| = 1 and||T'zo|| = ||T'||. The

norm attaining operators are well studied in the literature by several authors (see [22] for details and
references therein). A well known theorem in this connection is the Lindestrauss theorem which
asserts the denseness of norm attaining operators in the space of bounded linear operators between
two Hilbert spaces with respect to the operator norm (see for example, [6] for a simple proof of this
fact).

A natural analogue for this class of operators is the class of minimum attaining operators. Recall
that a bounded operat@t: H; — Hs is said to beminimum attainingif there existsty € H; with
llzol| = 1 such that|Txq|| = m(T), theminimum modulusf T". This class of operators was first
introduced by Carvajal and Neves in [5] and several basic properties were also studied in the line of
norm attaining operators.

A Lindenstrauss type theorem for minimum attaining operators is proved in [16]. Moreover, rank
one perturbations of closed operators is also discussed.

In this article, we define operators that attain the reduced minimum modulus and establish several
basic properties of such operators. We prove that if a densely defined closed opesdtains its
reduced minimum, then its Moore-Penrose invélfées bounded and attains its norm. It turns out that
this class is a subclass of minimum attaining operators as well as the class of closed range operators.
Finally, we observe that this class is dense in the class of densely defined closed operators with respect
to the gap metric as well as with respect to the carrier graph topology (see [13] for details). We prove
several consequences of this result.

In the second section we summarize without proofs the relevant material on densely defined closed
operators, the gap metric and the carrier graph topology. In the third section we define the reduced
minimum attaining operators, prove some of the basic and important properties of such operators and
compare with those of minimum attaining operators. In proving most of our results, we make use of
the corresponding result for minimum attaining operators, which can be found in [16] and [11].

2. PRELIMINARIES

Throughout we consider infinite dimensional complex Hilbert spaces which will be denofédiby, H-
etc. The inner product and the induced norm are denoted land||.||, respectively. The closure of
a subspac@/ of H is denoted byl/. We denote the unit sphere df by Sy, = {x € M : ||z|| = 1}.
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Let T be a linear operator with domain(7"), a subspace dfl; and taking values i#,. If D(T')
is dense i1, thenT is called adensely defined operator

The graphG(T") of T is defined byG(T") := {(z,Tx):x € D(T)} C H; x Hs. If G(T)
is closed, therl" is called aclosed operatar Equivalently, T is closed if and only if if(x,,) is a
sequence itD(7") such thate,, — = € H; andT'z,, — y € Ha, thenz € D(T') andT'z = y.

For a densely defined operator, there exists a unigue linear operator (in fact, a closed operator)
T : D(T*) — Hy, with

D(T*):={y€ Hy: 2z — (Tz,y)forallxz € D(T)is continuou$ C Hy

satisfying(Tx,y) = (x,T*y) forall z € D(T') andy € D(T™).

We sayT’ to be bounded if there exisfg > 0 such thal|Tx|| < M]||z|| for all z € D(T"). Note
that if T" is densely defined and bounded thean be extended to all df; in a unique way.

By the closed graph Theorem [21], an everywhere defined closed operator is bounded. Hence the
domain of an unbounded closed operator is a proper subspace of a Hilbert space.

The space of all bounded linear operators betwdermnd H» is denoted by3(H,, Hs) and the
class of all densely defined, closed linear operators betWieeand H is denoted by’ (H;, Hs). We
write B(H, H) = B(H) andC(H, H) = C(H).

If T'e C(H,, H2), then the null space and the range spacé€ afe denoted byV (") and R(T")
respectively and the spa¢&(T) := D(T) N N(T)* is called thecarrier of T In fact, D(T) =
N(T) @&+ O(T) [2, page 340].

LetTe :=T|c(r). AsC(T) = N(T)* (see [13, Lemma 3.3] for details), € C(N(T)*, Hy).

Let S,T € C(H) be operators with domain®(S) and D(T'), respectively. Therb + T is
an operator with domai® (S + 7') = D(S) N D(T) defined by(S + T')(x) = Sz + Tz for all
x € D(S+T). The operatofT has the domai(ST) = {x € D(T) : Tx € D(S)} and is defined
as(ST)(x) = S(Tx) forallz € D(ST).

If S andT are closed operators with the property tiiat7’) C D(S) andTz = Sz for all
x € D(T), thenT is called therestrictionof S andS is called arextensiorof 7. We denote this by
TCSs.

An operatorT’ € C(H) is said to benormalif 7*T = T'T*, self-adjointif 7' = T, symmetridf
T C T%, positiveif T'=T* and(Tz,z) > 0 forall z € D(T).
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LetV € B(H;, Hz). ThenV is called arisometryif ||Vz|| = ||z|| for all z € H; and a partial
isometryif V|1 is anisometry. The spacé(V ) is called thenitial spaceor theinitial domain
and the spac&(V) is called thefinal spaceor thefinal domainof V.

If M is a closed subspace of a Hilbert spaée then P,; denotes the orthogonal projection
Py - H — H with rangeM.

Here we recall definition and properties of the Moore-Penrose inverse (or generalized inverse) of
a densely defined closed operator that we need for our purpose.

Definition2.1 — (Moore-Penrose Inverse) [2, Pages 314, 318-320]7LetC(H;, H2). Then
there exists a unique operafbt € C(Hs, Hy) with domainD(T") = R(T) @+ R(T)* and has the
following properties:

1. TTty = y, forally € D(TT)

Prery
2. T'Tz = Py z, forallz € D(T)

3. N(TT) = R(T)*.

This unique operatdf' is called theMoore-Penrose inverser thegeneralized inversef 7.

The following property ofl'" is also well known.
For everyy € D(TT), let
L@y:{xepanqwx—MHqum—MIfmm|uezxn}
Here anyu € L(y) is called aeast square solutioof the operator equatiofiz = y. The vector
Tty € L(y), ||TTy|| < ||z|]| forall z € L(y)and itis called thdeast square solution of minimal

norm A different treatment of ' is given in [2, Pages 336, 339, 341], where it is calltaMaximal
Tseng generalized Inverse

Theorem2.2— [2, Page 320]. Lefl’ € C(H;, Hs). Then
1. D(T") = R(T) &+ R(T)*, N(TT) = R(T)* = N(T*)
2. R(T") = C(T)

3. Tt € C(Ho, Hy)

4. TTis continuous if and onlyR(T)) is closed
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5 T =T

6. 7" =11

7. N(T*T) = N(T)

8. T*T andT'T* are positive andT*T)" = TTT*
9. TT* andT*' T are positive and7T*)" = T*1T1,

Definition2.3 — [6]. LetT € B(Hi, Hz). ThenT is said to benorm attainingif there exists
xo € Sy, such that|Tzy|| = || T

We denote the set of all norm attaining operators betwégnd, by N'(Hy, H2) and N (H, H)
by N(H).

Definition2.4 — [2, 7, 24]. Letl’ € C(H, H). Then

m(T) = inf {||Tz| : z € Sp(r)}
T i=inf {|[Tz]| : = € Scay },

are called theninimum moduluand thereduced minimum modulws T, respectively. The operator
T is said to be bounded below if and onlynif(7") > 0.

Remark2.5: If T' € C(H;, Ha), then
(@) m(T) < ~(T) and equality holds if" is one-to-one

(b) m(T') > 0ifand only if R(T") is closed and” is one-to-one.

Proposition2.6 — [2, 10]. LetI" € C(H1, H2). Then the following statements are equivalent;
1. R(T)is closed

2. R(T™)is closed

3. Ty := T'|¢(r) has a bounded inverse

4. v(T) >0

5. T is bounded. In fact|T"T|| = ﬁ

6. R(T*T) is closed
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7. R(TT™)is closed.

Remark2.7: If T € C(H) andT~! € B(H), thenm(T) = ﬁ by (5) of Proposition 2.6.

Theorem2.8 — [Theorem 13.31, page 349], [3, Theorem 4, page 144]. Tet C(H) be
positive. Then there exists a unique positive operatsuch thatl’ = S2.

Theorem2.9— [3, Theorem 2, page 184]. L&t € C(H;, H2). Then there exists a unique partial
isometryV : H; — Hs with initial spaceR(7T*) and rangeR(7') such thatl’ = V|T'|.

Remark2.10 : ForT" € C(H,, H2), the operatolT'| := (T*T)% is called the modulus df.
Moreover,D(|T|) = D(T), N(|T|) = N(T) andR(|T|) = R(T*). As ||[Tz| = |||T|x| for all
xz € D(T), we can conclude that (7)) = m(|T|), andy(T) = ~v(|T).

Definition2.11 — [21, page 346]. Lét € C(H). The resolvent of " is defined by
p(T):={\eC:T -\ :D(T) — H isinvertible andT — \I)~' € B(H)}
and
o(T) : = C\ p(T)
op(T) :={AeC:T -\ :D(T)— H is not one-to-ong,
are called thespectrumand thepoint spectrunof 7', respectively.
The operatofS is called the square root @f and is denoted by = T3,

Definition2.12 — [10, Page 267]. L&t € C(H). Then thenumerical rangeof T' is defined by
rva:{amxyxesmm}

The following Proposition is proved in [17, Chapter 10] for regular (unbounded) operators be-
tween HilbertC*-modules, which is obviously true for densely defined closed operators in a Hilbert
space.

Proposition2.13 — [23, Lemma 5.8]. Let’ € C(H). LetQr := (I+T*T)*% andFr :=TQr.
Then

1. QreB(H)and0 < Qpr <ITI
2. R(Qr) = D(T)

3. (Fr)* = Pp-
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4. |[Fr| < 1ifand only if T € B(Hy, Hs)
5. T = Fp(I — FiFp) 2

6. Qr = (I — FiFy)e.

The operatoffr is called the bounded transform Bfor the z-transform ofT".

Lemma2.14 —[8, 9, 19]. Lefl € C(H,, Hy). Denotel = (I+T*T)~' andT = (I+TT*)"L.
Then
1. T € B(H1>, f S B(HQ)
~ . . 1 . ~ ~ 1
2. TT CTT, ||TT|| <5 andTT* CT*T, ||T*T] < 3.
One of the most useful and well studied metric@(f,, Hs) is the gap metric. Here we give

some details.

Definition2.15 — (Gap between subspaces). [10, page 197]HLe¢ a Hilbert space antl/, N
be closed subspaces 8t Let P = Py, and@ = Py. Then the gap betweel and N is defined by

O(M,N) = [|P - Q.

If S,T € C(Hy, Ha), thenG(T),G(S) C H; x Hs are closed subspaces. The gap betwggh)
andG(9) is called the gap betweéh and.S. For a deeper discussion on these concepts we refer to
[10, Chapter IV] and [1, page 70].

On B(H ), the norm topology and the topology induced by the gap metric are the same. This can
be seen from the following inequalities.

Theorem2.16— [18, Theorem 2.5]. Le#d, B € B(H). Then

0(A,B) < |A~-B| < V1+][AJ]? V1+|B|?6(A, B).

We remark that though the above result is stated for operators defined on a Hilbert space, it
remains true for operators defined between two different Hilbert spaces.

Definition2.17 — LetT € C(H;, H2). Define theCarrier Graph ofT" by
Ge(T) :={(z,Tz) : 2 € C(T)} C Hy x Ha.
ForS,T € C(H., H2), the gap betweeG'(S) andG¢(T') is denoted by,

n(S,T) = [Pae(s)y — Paemll-
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The topology induced by the metrig-, -) onC(H1, H,) is called theCarrier Graph Topology
To computen (.S, T') we can use the following formula;

Theorem2.18— LetT, S € C(Hy, H3). Then
In(T, S) — 6(N(T), N(S))| < 6(T,S) <n(T,5) +0(N(T),N(S)).

If N(T) = N(S), by Theorem 2.19, we can conclude thés,T") = 6(S,T"). For the details of
this metric we refer to [13].

3. MAIN RESULTS

In this section we define reduced minimum modulus attaining operators and discuss their properties.
Recallthatl” € C(Hy, Hz) is called minimum attaining if there existg € Sp(7) such that|T'zo|| =

m(T). In particular, ifT" € B(H;, H2), thenT' is minimum attaining if there existsy € Sy, such
that||Txo|| = m(T).

We denote the class of minimum attaining densely defined closed operators béfwaed H,
by M.(Hi, H2) and M (H, H) by M.(H). The class of bounded minimum attaining operators is
denoted byM (H, Hy) and M(H, H) by M(H).

We propose the following definition;

Definition3.1 — We sayl' € C(H;, H2) to bereduced minimum attainini there existszy €
SC(T) such thaﬂ|Ta:0H = ’Y(T).

The class of reduced minimum attaining densely defined closed linear operators b&taeeah
H, is denoted byl'.(H1, Hs). If Hy = Hy = H, then we writel'.(Hy, Hy) by I'.(H). The class
of bounded operators which attain the reduced minimum is denotéd By, H,) andI'(H, H) is
denoted byl'(H).

Theorem3.2— LetT € C(Hy, Hy). ThenT attains its reduced minimum if and only7f is
bounded and attains its norm.

PROOF: Supposd’ attains its reduced minimum. Then there existss C(T') such that|z|| =
1 and||T(zo)| = ~(T). We must havey(T) > 0 as otherwiser, € N(T') will imply zo = 0, a
contradiction. By Proposition 2.6, is bounded. Leyy = T'(z0)/||T(x0)|| = T(x0)/v(T). Then
lyo]| = 1 and

1T (yo) | = IT"T (o)l /7(T) = l|zoll/+(T) = 1/5(T) = ||IT"].
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ThusT" attains its norm.

Conversely, assume that is bounded and attains its norm. Then there exigts H, such that
lyoll = 1 and||T (yo)|| = | T1|. Letyo = u + v whereu € R(T) andv € R(T)*. Suppose # 0.
Then||u|| < 1. Hence

1T = 1T o) | = 1T @)l < I T lllull < |77,

a contradiction. This implies that = 0, henceyy, € R(T'). Thus there exists, € C(T") such
thatyy = T(zo). Thenzy = TT(yo), hencel||zo| = ||TT||. Letzg = z0/||xo||. Thenzy € C(T),
|20/l = 1 and
IT(z0) | = llyoll/llwoll = 1/ITH| = ~(T).
ThusT attains the reduced minimum modulus. O

Corollary 3.3 — LetT' € C(H;, H2). Suppos€’ is one-to-one. Then the following are equiva-
lent.

1. T € MC(Hl,HQ)
2. T € FC(Hl,HQ)

3. Tt € B(H,, H,) and attains its norm.

PROOF: SinceT is injective, N(T') = {0}. HenceC(T) = D(T) and~(T) = m(T'). This

shows equivalence of (1) and (2). Equivalence of (2) and (3) follows from Theorem 3.2. O

Lemmed.4 — LetT € C(Hy, Hs). ThenT € T'.(Hy, Hy) if and only if T € M (N(T)*, Hs).
PROOF: The proof follows from the fact that(7¢) = (7). O
Proposition3.5 — LetT € I'.(Hy, Hy). ThenR(T) is closed.

ProoF: This follows from Theorem 3.2 and Proposition 2.6. 0
Example3.6 : (1) All orthogonal projections on a Hilbert space attain their reduced minimum
(2) An operator with non closed range cannot attain its reduced minimum.

Proposition3.7 — LetT € C(H1, Hy). ThenT € I'o.(H1, Hs) ifand only if | T'| € T'.(Hy).

ProOF: By definition D(|T'|) = D(T) andN(|T'|) = N(T). HenceC(|T|) = C(T). Also,
|Tx|| = |||T|z| forall z € D(T'). ThusT € I'.(H, Ho) ifand only if |T'| € I'.(H1). O
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Proposition3.8 — [14, Proposition 4.2]. Lef' = T* € C(H). Theny(T) = d(0,0(T) \ {0}).

Lemma3.9 —
1. LetT € C(H) be self-adjoint. Them(T") = d(0,0(T))

2. If T € C(Hy, Hy), thenm(T) € o(|T|). In particular, if Hy, = Hy = H andT > 0, then
m(T) € o(T).

PrRoOF: Proof of (1): If " is not invertible, ther) € ¢(7") andT is not bounded below. Hence
in this casen(T") = 0 = d(0,0(T)).

Next assume thal ¢ o(T). Sinceo(T) is closed ([23, Proposition 2.6, Page 29]), we can
conclude thatl(0, (7)) > 0. Also, asT~! € B(H), T must be bounded below. HenggT) > 0.
In this casem(T") = v(T'). Now, by Proposition 3.8, we have(T') = v(T') = d(0,0(T) \ {0}) =
d(0,0(T)).

Proof of (2): Note tha{T’| > 0 and by (1), we have that(T") = m(|T|) = d(0,o(|7)). Since,
o(|T]) is closed, we can conclude thatT') € o(|T|). If Hy = Ho = H andT > 0, then we have
|T| = T. Hence in this case the result follows. O

Remark3.10 : LetT' € C(H) be normal. Then we can prove the formuld?’) = d(0,0(T)).
First note that the crucial point in proving this in the self-adjoint case is Proposition 3.8. This is proved
for normal operators in [12, Theorem 4.4.5]. Now following along the similar lines of Proposition
3.9, we can obtain the formula.

Proposition3.11 — LetT’ = T € C(H). ThenT € I'.(H) if and only if eithery(T") or —(T")
is an eigenvalue df'. In particular, ifT" > 0, thenT € T'.(H) if and only if v(7T') is an eigenvalue of
T.

PROOF: We have by Lemma 3.4, thdt € T.(H) if and only if T € M(N(T)*). As N(T)*
is a reducing subspace f@i, T is self-adjoint. NowTc € M(N(T)*) if and only eitherm(T¢)
or —m(T¢) is an eigenvalue fofx and hence foff". Sincem(T¢) = v(T'), the conclusion follows.
In particular, if7" > 0, the eigenvalues df are positive, so we can conclude that I'.(H) if and
only if ¥(T') € o,(T). O

Proposition3.12 — LetT € C(H;, Hy). ThenT € I'.(H;, Ho) ifand only if T*T € T'.(Hy).

PROOF: By Theorem 3.27 € I'.(H;, H,) if and only if R(T) is closed and™t € M(Hy, Hy).
This is equivalent to the condition théf*)" = (T7)* € M(H;, Hy). This is in turn equivalent to
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the fact that(7")(T1)* € M(Hy). But (T)(T1)* = (T*T)f, by Theorem 2.2. Thus by Theorem
3.2,7*T € To(Hy). 0

Proposition3.13 — LetT" € C(Hy, Hy). ThenT € I'.(H;, Ho) ifand only if T € T'.(Ha, Hy).

PrRoOOF: If T € T'.(H1, H2), thenR(T) is closed and so iR(T™). Also, we havey(T') = v(T™).
By Theorem 3.27" € N (Hs, Hy). Also, (TT)* € N'(Hy, Hs), by [4, Proposition 2.5]. Note that
(TT)* = (T*), by Theorem 2.2. Hence by Theorem 3.2 agdih,c I'.(H,, H;). Applying the
same result fof ™ and observing thaf™* = 7', we get the other way implication. O

Remark3.14 : The above result need not hold for minimum attaining operatorsi et/ and
{en : n € N} denote the standard orthonormal basis ffbr That ise,,(m) = d,,, the Kronecker
delta function. Define operatof3, R : H — H by

De, = —ey,
n
Re,, = e,41 for eachn € N.
LetT = RD. SinceRis anisometry, we have(7") = m(D) = d(0,0(D)) = inf {% ‘n € N} =
0. Since0 ¢ o,(D), D is not minimum attaining. Thu¥' is not minimum attaining. ButN (7%) =
spar{e;}. Som(T*) = 0 andT* € M(H). Note thatT*T = D? cannot have closed range since

D is compact. EquivalentlyR(T') is not closed, whenc@ cannot attain its reduced minimum by
Theorem 3.2.

Proposition3.15 — LetT € C(Hy, Hy). If T € T'.(H1, Ha), thenT € M (H;, H2).

PROOF: First assume thdl is one-to-one. Then(7T") = m(T'). Hence ifT € I'.(H,, H2), then
clearlyT € M.(H,, Hy). If T is not one-to-one, theV (T) # {0}. Hence in this casex(T) = 0
and there exist8 # x € N(T') such thatl'x = 0. Hence clearlyl" € M.(H;, H2). This completes
the proof. O

Proposition3.16 — [11, Proposition 3.5]. L&t € C(H ) be positive. Then
m(T) = inf {(Tx,z) : x € Sp(1)}-

In particular, ifT € C(Hy, Hz), thenm(T*T) = m(T)>.

Proposition3.17 — LetT € C(H) be positive. Then
Y(T) = inf {{(Tx,x) : x € Sc(r)}-

In particular, if T € C(Hy, Hy), theny(T*T) = ~(T)2.
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PROOF: Since,T¢ is positive, we have by Proposition 3.16,

Y(T) =m(Te) = inf {{Tow, z) : v € So(r)}
= inf {(T'z,z) : ® € Sc(1)}-

Further, ifT" € C(Hy, Hy), thenT*T € C(H,) is positive. Thus by applying the above formula
for T*T and by the definition of/(T"), we get the conclusion.

Remark3.18 : LetT € C(H) be positive. Then the following statements are equivalent (see [11,
Proposition 3.8]):

(1) T € M.(H)
(2) m(T) is an eigenvalue df’
(3) m(T') is an extreme point o’ (7).

In general ifT" € T'.(H) and is positive, then(7") need not be an extreme point of the numerical

range ofT. To see this, consider the operafron C3, whose matrix with respect to the standard
0 0 0

orthonormal basis af?is | 0 L1 0 |[. Itcan be easily computed thatT") = 5, Which is not an

0 01
extreme point ofV (T") = [0, 1], butm(T") = 0, which is an extreme point o/ (T").

Proposition3.19 — LetT" € C(H;, H2) and Fr be the bounded transform @f. Then

V(T)
(1) 7 (Fr) = ———2—
(Fr) ETEaP
m(T)
2) m(Pr) = ———.
@) m(Fr) = s
ProOF : Proof of (1): In view of Proposition 3.17 it is enough to show th&f’; Fr) =
ﬂ i * — T =1 7 _ sy —1 i
T (T First we note thatt’; Frp = T*T'(I + T*T)~" = I — (I + T*T)~". Using the

formula in Proposition 3.8, we get
Y(FrFr) =d(0,0(FpFr) \ {0})
- inf{ﬁ L€ o(T*T)\ {0})

=inf {1 — 1le“ cu€o(TT)\ {0}}
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= 1—sup g n e o(TT)\ {0})
1

= Tt g e o)\ {01}

_ (T1T)

1 A(TT)

T
Hence we can conclude thatFr) = L
1+~(T)?
Proof of (2): To prove this we need to use (1) of Lemma 3.9 and follow the similar steps as

above. a
Proposition3.20 — LetT" € C(H1, Ha). ThenT € I'.(Hy, Ho) ifand only if Fr € I'(Hy, Ho).

PROOF : In view of Proposition 3.12, it suffices to show tHAtT € I'.(H;) if and only if
FiFr € I'(Hy). First, note that Frr)* = Fp«. If T*T" € T'.(Hy), there existseg € S+ such
thatT*Txy = v(T*T)xo. Then we have

FiPrag= (I —(I+T*T)"") xo
V(T°T)

A R,

1+~(T*T)

_ (@)
1+~(T)?

= v(Fr)*xo

= y(FrFr)xo.

To

This shows that7. Frr € T'(Hy).

To prove the converse, suppaBgFr € I'(Hy). ThenFjFr = Fr«Fp = T*T(1 + T*T)! ¢
['(Hy). Thusthere existgy € N((Fr)*Fr)* = N(Fr)* = N(T)* suchthal™* T (I+T*T) txg =
~v(Fr+ Fr)zo. By Proposition 3.19, we can obtain that

(1= U +T"T))an) = (1~ (15 ) (@0)
Equivalently,(I+T*T) ! (xq) = Hi(T)sz' Thatiszg € R((I+T*T)™') = DUI+T*T) =

D(T*T). It follows that (I + T*T)(z¢) = (1 + v(T)?)(zo) or T*Tzy = v(T*T)xo, concluding
T*T attains its reduced minimum and sdlis a

Next, we would like to prove a Lindenstrauss type theorem for the class of reduced minimum
attaining operators. We need the following results for this purpose.
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Theorem3.21— [16, Theorem 3.1], [20, Remark 3.7]. L& T € C(Hy, Hz) and D(S) =
D(T). Then

1. the operators'z (T — S)Sz and Sz (T — S)T'z are bounded and

N[

~1 = 51 -1
0(5,T) = max {|T%(T = 8)S3 |, |53(T - $)T% }

2. if T'— Sis bounded, the(S,T) < ||S —T|.

Theorem3.22— [16, Theorem 3.5]. Lef" € C(H;, Hz). Then for eack > 0, there exists
S € B(Hi, Ha) with ||S|| < e such thatS + 7" is minimum attaining and(S + 7,7) < e. More
over, ifm(7T) > 0, then we can choosg to be a rank one operator.

Theorem3.23— LetT € C(H;, Hy). Then for eack > 0 there existsS € B(H;, Hz) such that
LISl <e

2. N(T)=N(T + S) and

3. T'+ S attains reduced minimum, adsS + 7, 7") <e

Moreover, ify(T") > 0, then we can choosg to be a rank one operator.

PROOF : First assume that(7") > 0. Considerly := T|c(ry : N(T)= — Hs is densely
defined closed operator. We may assume that e < (7). By Theorem 3.22, there exist €
B(N(T)*, Hs) such that|Sy|| < e andT¢ + Sp is minimum attaining. That is, there exists €
D(Tc + So) = D(Te) = C(T) such that||zo|| = 1 and||(Tc + So)(zo)|| = m(Tec + Sp). As
m(Tc) =~v(T') > 0, we can choos§, to be a rank one operator.

Forz = u+v € Hywithu € N(T), v € N(T)*, defineSz = Sov. Then||Sz| = ||Sov|| <
ISollllv]l < €||z||- Thus]|S]| < e. Note thatS is a rank one operator.

We claim thatl" + S attains reduced minimum. Note th&{(T + S) = D(T). Letu € N(T).
Then(T' + S)(u) = Tu+ Su = 0. ThusN(T) C N(T'+ S) = {z € D(T) : Tx + Sz = 0}.
Suppose that € D(T)\ N(T). Letx = u +vwithu € N(T) andv € N(T)*. Thenv # 0. Also,
ve C(T)asz,u e D(T). Then

(T + S)(@)[| = [ Tv + Sv|
= ||Tv + Sov||
> [[Tol| = [|Sov|
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> (D)ol = [1Sollllv]]
> (V(T) = &)|l]l
> 0.

Thus (T + S)(x) # 0. Thusz ¢ N(T + S). This show thatN(T") = N(T + S). Since
D(T + S) = D(T), we haveC(T + S) = C(T) and hence

VT +8) =t {[(T + ) (@)| : 2 € C(T), ||| = 1}
= nf {|[(Tc + So)(@)| - © € C(T), ||lz| = 1}
= [[(Te + So) (o) |
= [[(T"+ 5) (o)l

Next suppose that(7") = 0. Lete > 0. Choosery € C(T') such that|zo|| = 1 and||Txo|| < i
Then
€ € €
I(T+ 5D o)l = 5 = I Taoll > 5.
Hence

€ € €
- < T+ =1 <~(T+ =).
O<4_m( —1—2)_’}'( +2)

By above argument, there exisise B(H,, H) such that|S| < g andT + %I + S attains

reduced minimum. Therhgl + 5| < e. TakesS = % + S. Then by Theorem 3.21 satisfies all the
stated conditions. O

We have the following consequences.

Theorem3.24— The following statements holds true;
1. I'.(H1, Hs) is dense irC(H;, Hz) with respect to the gap metrig-, )
2. I'.(H1, Hy) is dense irC(H;, H2) with respect to the metrig(-, -)

3. the set of all closed range operators ©fH;, H») is dense irC(H;, Hz) with respect to the
metric(-, )

4. the set of all closed range operators ©fH1, Hs) is dense irC(H;, H2) with respect to the
metricn(-, -).
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PROOF: Proof of (1): Follows by Theorem 3.23.

Proof of (2): Lete > 0. Then by Theorem 3.23, we can obt&inc B(H;, H2) with ||S|| < €
suchthatV(T) = N(T + S) and¢(T,T + S) < e. By Theorem 2.19, it follows thaf(T" + S, T") =
(T + S,T) < e. Hence the claim.

Proof of (3): Sincd’.(H;, H») is a subset of the set of all closed range operato€§ i, H2),
the conclusion is immediate by (2) above. O

Proof of (4): This follows by Proposition 3.5 and (2) above. O

Using the equivalence of the gap metric and the metric induced by the operator nB(H o)
we can obtain the following consequences.

Corollary 3.25 — The following statements are true.

1. I'(Hy, Hs) is dense in3(H,, Hz) with respect to the operator norm

2. the set of all bounded closed range operators is dern8¢fin, H,) with respect to the operator
norm.
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