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Abstract. For a Banach algebra A, rad(A) denotes the radical of A and for a ∈ A, r(a) denotes the

spectral radius of A. The following theorem is proved: Let A and B be real commutative Banach algebras,
each with the unit 1. Let T : A → B be a linear map satisfying T (1) = 1, T is onto and r(T (a)) =

r(a) for all a ∈ A. Then T is a homomorphism modulo rad(B). (This means that T (ab) − T (a)T (b) ∈
rad(B) for all a, b ∈ A). If in addition, B is semisimple, then T is a homomorphism. Further, if A is also
semisimple, then T is an isomorphism.

As a consequence, we get the following: Let X, Y be compact Hausdorff spaces, let C(X), C(Y )
denote the Banach algebras of all complex valued continuous functions on X, Y respectively each with

the supremum norm. Let A, B be uniformly closed real subalgebras of C(X), C(Y ) respectively, each

containing the constant function 1. Let T : A→ B be a linear onto map. Then T is an isometry and T (1)
= 1 if and only if T is an algebra isomorphism.

These results generalize the classical theorems of Banach-Stone and Nagasawa.

Introduction

For a compact Hausdorff space X, C(X) denotes the Banach algebra of all complex valued continuous
functions defined on X with the point wise operations and supremum norm, defined by

‖f‖ := sup{|f(x)|, x ∈ X}, f ∈ C(X)

The classical Banach-Stone theorem states that for compact Hausdorff spaces X and Y if C(X) and C(Y )
are linearly isometric, then they are isomorphic as algebras.

Several generalizations of this well known theorem are available in the literature [1, 2, 5]. Some gen-
eralizations of this theorem are provided by replacing C(X) by its subspaces or subalgebras. A subset
A of C(X) is said to separate points of X, if for all x, y ∈ X with x 6= y, there exists f ∈ A, such that
f(x) 6= f(y). In 1959, Nagasawa [8] extended the Banach-Stone theorem for the complex function algebras,
that is, for the uniformly closed subalgebras of C(X) which contain the unit of C(X) and separate the
points of X. He proved that two function algebras are isomorphic as algebras if and only if they are linearly
isometric as Banach spaces.

In 1991, Kulkarni and Arundhathi [6] have extended Nagasawa’s theorem to real function algebras [7]
which are certain uniformly closed real subalgebras of C(X). (For definitions see Definition 1.2.)

In this paper we use the Gelfand theory of commutative real Banach algebras due to Ingelstam [4],
[7] and prove that if certain commutative real Banach algebras are spectrally isometric (Definition 2.1)
then they are isomorphic as algebras (Theorem 2.2). This result generalizes theorem of Nagasawa [8], and
Kulkarni and Arundhathi (See Theorem 5.1.4 and Remark 5.1.5 in [7]).

1. Preliminaries and Notations

In this section we recall some basic concepts in the theory of real Banach algebras [4, 7]. An algebra A
over a field F is a ring which is also a vector space over F such that (αa)(b) = α(ab) = a(αb) for all a, b ∈ A
and α ∈ F.
A is said to be commutative if ab = ba for a, b ∈ A.
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An algebra A is called real algebra if F = R, the field of real numbers, and a complex algebra if F = C,
the field of complex numbers; such an algebra is said to be normed by ‖.‖ if (A, ‖.‖) is a normed linear
space such that ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A.
A complete normed algebra is called a Banach algebra.
Note that every complex Banach algebra A can be considered as a real Banach algebra.
If A has a unit element, we denote it by 1.
Let A be a real algebra with unit 1 and a ∈ A. Then the spectrum of a, denoted by Sp(a), is defined as
follows:

Sp(a) := {λ = s+ it ∈ C : (a− s)2 + t2 is not invertible in A}
(This definition of spectrum of an element of a real algebra is due to Kaplansky).
The spectral radius of an element a ∈ A denoted by r(a) is defined as r(a) = sup{|λ| : λ ∈ Sp(a)}. If A

is a Banach algebra, then r(a) is finite and is given by the spectral radius formula: r(a) = lim
n→∞

‖an‖1/n.

Let A and B be real or complex algebras. A linear map T : A→ B is called an algebra homomorphism
if T (ab) = T (a)T (b) for all a, b ∈ A. Further if T is bijective then it is called an algebra isomorphism.
For a real commutative Banach algebra A with unit 1, the Carrier space of A denoted by Car(A) is the
set of all non-zero algebra homomorphisms of A into C. For a ∈ A, define a mapping â : Car(A) → C
by â(φ) = φ(a) for all φ ∈ Car(A), â is called the Gelfand transform of a. The weakest topology on
Car(A) which makes â continuous for all a ∈ A is called the Gelfand topology on Car(A).

Since A is a real algebra, φ̄ ∈ Car(A) whenever φ ∈ Car(A) and there is a natural map τA : Car(A)→
Car(A) defined by τA(φ) = φ̄. Also if φ ∈ Car(A) then ker φ = {a ∈ A : φ(a) = 0} is a maximal ideal of
A. In fact every maximal ideal of A is equal to ker φ for some φ ∈ Car(A). The radical of A denoted
by rad(A) is the intersection of all maximal ideals of A. It is well known that for a commutative Banach
algebra A,
rad(A) = {a ∈ A : â = 0} [3].
A is said to be semi-simple if rad(A) = {0}.

The following theorem summarizes some of the properties of Car(A), proof of which may be found in
[4, 7]

Theorem 1.1 (See Theorem 1.2.9 of [7]). Let A be a real commutative Banach algebra with unit 1.

(1) Car(A) endowed with the Gelfand topology is a compact Hausdorff space and the mapping τA :
Car(A) → Car(A), defined by τA(φ) = φ̄, for all φ ∈ Car(A) is a homeomorphism such that
τ2A = τA ◦ τA is the identity map on Car(A).

(2) The mapping a→ â, a ∈ A is an algebra homomorphism of A into C(Car(A)).
(3) For a ∈ A, â(Car(A)) = Sp(a) and hence

‖â‖ = sup{|â(φ)| : φ ∈ Car(A)} = r(a).

Let X be a compact Hausdorff space and τ : X → X be a homeomorphism such that τ2 = τoτ is the
identity map on X. Let

C(X, τ) := {f ∈ C(X) : f(τ(x)) = f(x) for all x ∈ X}.
Then C(X, τ) is a real Banach algebra. It is not a complex algebra. Note that if τ is the identity map on
X, then C(X, τ) is an algebra of all continuous real valued functions on X.

Definition 1.2. A real function algebra on (X, τ) is a uniformly closed subalgebra of C(X, τ) which
separates points of X and contains the constant function 1.

In [7], it is shown that every complex function algebra of C(X) can be regarded as a real function algebra
on (Y, τ) for some suitably chosen compact Hausdorff space Y and a topological involution τ on Y .

In [6], Kulkarni and Arundhathi have proved that two real function algebras are linearly isometric if
and only if they are isomorphic as algebras. We refer to this result as real analogue of Nagasawa’s theorem
(See Theorem 5.1.4 in [7]).

Corollary 1.3. Let A be a commutative real Banach algebra with unit 1 and Â := {â : a ∈ A}. Then the

closure of Â (denoted by cl(Â)) in C(Car(A)) is a real function algebra on (Car(A), τA).
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Proof. By Theorem 1.1, it follows that Â is a real subalgebra of C(Car(A)). In fact, for a ∈ A and

φ ∈ Car(A), (â ◦ τA)(φ) = â(φ̄) = φ̄(a) = ¯̂a(φ). Therefore â ∈ C(Car(A), τA) for all a ∈ A and hence Â is
a real subalgebra of C(Car(A), τA).

Also, if φ1, φ2 ∈ Car(A) and φ1 6= φ2, then φ1(a) 6= φ2(a) for some a ∈ A. Therefore â(φ1) 6= â(φ2) and

hence Â separates points of Car(A). Further, since each φ ∈ Car(A) is a non-zero algebra homomorphism,

φ(1) = 1 for all φ ∈ Car(A). Therefore, 1̂ is the constant function 1 on Car(A). Hence cl(Â) in C(Car(A))
is a real function algebra on (Car(A), τA). �

2. The Main Theorem

Definition 2.1. Let A, B be Banach algebras each with unit 1. A linear map T : A → B is called a
spectral isometry if r(T (a)) = r(a) for all a ∈ A. It is called an isometry if ‖T (a)‖ = ‖a‖ for all a ∈ A.

Theorem 2.2. Let A, B be real commutative Banach algebras with unit 1 and T : A→ B be an onto linear
spectral isometry such that T (1) = 1. Then T is an algebra homomorphism modulo rad(B). If in addition,
B is semisimple, then T is a homomorphism. Further, if A is also semisimple, then T is an isomorphism.
Conversely, if T is an isomorphism of A onto B, then T is a spectral isometry such that T (1) = 1.

Proof. Recall from Theorem 1.1, that ‖â‖ = r(a), ‖b̂‖ = r(b) for all a ∈ A, b ∈ B. Define,

T̂ : Â→ B̂ by T̂ (â) = T̂ (a).

Claim: T̂ is well defined.
Suppose a1, a2 ∈ A such that â1 = â2, i.e ̂(a1 − a2) = 0 which implies r(a1 − a2) = r(T (a1 − a2)) =

‖ ̂T (a1 − a2)‖ = 0 which implies that ‖T̂ (a1)− T̂ (a2)‖ = 0. Therefore T̂ ˆ(a1) = T̂ ˆ(a2).

This proves the claim. Clearly T̂ is linear and for all â ∈ Â

‖T̂ (â)‖ = ‖T̂ (a)‖ = r(T (a)) = r(a) = ‖â‖.

Therefore T̂ is an isometry. Also T̂ (1̂) = 1̂. Now, T̂ is onto since T is onto. Therefore T̂ is a unit preserving

linear isometry of Â onto B̂.
Now, T̂ can be extended linearly and isometrically to T ′ from cl(Â) onto cl(B̂). Also, by Corollary 1.3,

cl(Â) is a real function algebra on (Car(A), τA) and cl(B̂) is a real function algebra on (Car(B), τB).

Therefore T ′ is a unit preserving linear isometry of the real function algebra cl(Â) onto cl(B̂).
Hence by the real analogue of Nagasawa’s theorem, (Theorem 5.1.4 in [7]) T ′ is an algebra isomorphism.

Therefore T ′/Â = T̂ is also an algebra isomorphism, that is,

T̂ (â1.â2) = T̂ (â1).T̂ (â2).

Thus

̂(T (a1.a2)− T (a1).T (a2)) = 0 for all a1, a2 ∈ A.

i.e T (a1.a2)−T (a1).T (a2) ∈ rad(B). Thus T is an algebra homomorphism modulo rad(B). In addition if B
is semisimple, that is, rad(B) = {0} then clearly T (a1.a2) = T (a1).T (a2) for all a1, a2 ∈ A. Therefore, T is
an algebra homomorphism. Further, if A is also semisimple then T (a) = 0 implies r(T (a)) = r(a) = ‖â‖ = 0
which implies a ∈ rad(A) and hence a = 0. Therefore T is one-one. Hence T is an algebra isomorphism.

Conversely if T is an algebra isomorphism then Sp(T (a)) = Sp(a) for all a ∈ A (See Corollary 1.1.21
and Remark 1.1.22 of [7]) and hence T is a spectral isometry. �

Corollary 2.3. Let X, Y be compact Hausdorff spaces, A and B be uniformly closed real subalgebras of
C(X), C(Y ) respectively, each containing the constant function 1. Let T : A → B be a linear onto map.
Then T is an isometry and T (1) = 1 if and only if T is an algebra isomorphism.

Proof. Since ‖f‖ = r(f) for all f ∈ A (respectively for all f ∈ B), A and B are semisimple and if T : A→ B
is a isometry, then T is an spectral isometry. Hence the corollary follows from Theorem 2.2. �
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Remark 2.4. Note that we cannot replace spectral isometry by isometry in Theorem 2.2 as the following
example shows. (See Example 1.4.6 in [7].) Let A = (R2, || ||∞) with coordinate wise multiplication. For a
fixed t with 0 ≤ t ≤ 1

2 , let At = (R2, || ||∞) with the multiplication ∗t defined by

(x1, x2) ∗t (y1, y2) = (x1y1 − t(x1 − x2)(y1 − y2), x2y2 − t(x1 − x2)(y1 − y2)).

Then At is a commutative Banach algebra with unit (1, 1). Let T : A→ At be the identity map. Then T
is a linear isometry of A onto At, A is semisimple, but T is not a homomorphism. Note that T is not a
spectral isometry. For a = (1,−1) ∈ A, r(a) = 1. If t = 1

4 , r(T (a)) = 0.
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