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In this article we give a characterization of the convergence of projec-
tion methods which are useful for approximating the Moore-Penrose
inverse of a closed densely defined operator between Hilbert spaces.
We illustrate the main theorem with an example. Also a procedure for
constructing the admissible sequence of projections is discussed.
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1. Introduction

Projection methods are efficient and widely used tools to approximate the
solution of a given operator equation. In this method the infinite dimensional
problem (operator equation) can be reduced to a sequence of finite dimen-
sional operator equations (matrix equations). Hence these matrix equations
can be solved with the help of the known techniques of the finite dimensional
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case. So this method has advantages from theoretical as well as computa-
tional point of view.

Our main aim is to solve the operator equation

Tx = y (1)

where T is a densely defined closed and unbounded operator between Hilbert
spaces H1 and H2. In an earlier paper [12], we studied this problem with the
assumption that T has a bounded inverse. In the present paper, we do not
make this assumption. Consequently, we look for the least square solution
of minimal norm of the equation Tx = y.

In this article we give a necessary and sufficient condition for the con-
vergence of projection methods to such a least square solution of minimal
norm.

To approximate the Moore-Penrose inverse of an operator by projection
methods, first we should be able to approximate the given operator with
the help of a pair of sequences of projections. We call such a pair to be
admissible for the given operator (see Definition 3.2).

We can always find an admissible sequence of projections if the operator
is bounded. But, since unbounded operators are defined on subspaces of
Hilbert space, we have to impose some conditions on the sequence of projec-
tions. Thus it is difficult to find an admissible sequence in this case. In this
article we have proved that such a sequence of projections can be constructed
by introducing some new operators (see Section 2).

The projection methods discussed in this article generalize the results of
the article [12] in three directions: First, we extend the results of [12] for
the usual inverse to the Moore-Penrose inverse. The second is, in this article
we consider operators between different Hilbert spaces whereas in [12] we
have considered operators on a separable Hilbert space. The third is that
we assume that the range of the operator is separable instead of the whole
space.

This paper is organized as follows: In the second section we define the
convergence of generalized projection methods and give a necessary and
sufficient condition for the convergence. We illustrate this method with
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an example. In the third section the existence of admissible sequence of
projections is discussed.

2. Notations and Preliminaries

Throughout the paper we denote infinite dimensional complex Hilbert spaces
by H, H1, H2, H3, and inner product and the corresponding norm on a
Hilbert space are denoted by 〈., .〉 and ‖ · ‖ respectively.

L(H1,H2):= The set of all linear operators between H1 and H2.

L(H) := L(H, H).

If T ∈ L(H1, H2), then the domain, null space and the range space of T

are denoted by D(T ), N(T ) and R(T ) respectively. For S, T ∈ L(H1,H2)
and U ∈ L(H2,H3), D(S + T ) = D(S)∩D(T ) and (T + S)x = Tx + Sx for
all x ∈ D(T + S). The domain of the operator UT is given by D(UT ) =
{x ∈ D(T ) : Tx ∈ D(U)} and in this case UTx = U(Tx) for all x ∈ D(T ).

B(H1,H2):= The space of all bounded linear operators from H1 into H2.

B(H) := B(H, H).

The graph G(T ) of T ∈ L(H1,H2) is defined as G(T ) := {(x, Tx) : x ∈ D(T )}.
If G(T ) is closed in H1 ×H2, then T is called a closed operator.

C(H1,H2) := {T ∈ L(H1,H2) : T is closed}.

C(H) := C(H, H).

Note 2.1. By the Closed Graph Theorem [13, 21.1, Page 420], it follows
that a closed operator T ∈ C(H1,H2) with D(T ) = H1 is bounded.

If S and T are two operators, then by S ⊆ T we mean that S is the
restriction of T to D(S). i.e., D(S) ⊆ D(T ) and Sx = Tx, for all x ∈ D(S)
and in that case, we may also write S as T |D(S).

If M is a subspace of H, then M̄ and M⊥ denote the closure and the
orthogonal complement of M in H respectively. If M is closed, then PM

denotes the orthogonal projection onto M .

Suppose X1 and X2 are subspaces of a Hilbert space with X1∩X2 = {0}.
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Then we use the notation X1 ⊕X2 to denote the direct sum of X1 and X2,
and X1 ⊕⊥ X2 to denote the orthogonal direct sum of X1 and X2 whenever
〈x, y〉 = 0 for every x ∈ X1 and y ∈ X2.

Definition 2.2 — An operator T ∈ L(H1, H2) with domain D(T ) is said
to be densely defined if D(T ) = H1. The subspace C(T ) := D(T ) ∩N(T )⊥

is called the carrier of T . If T is densely defined, then there exists a
unique adjoint T ∗ of T which satisfy 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ D(T ) and
y ∈ D(T ∗).

Note 2.3. If T ∈ C(H1,H2), then D(T ) = N(T )⊕⊥ C(T ) [2, page 340].

Definition 2.4 — [Moore-Penrose Inverse] [2] Let T ∈ C(H1,H2) be
densely defined. Then there exists a unique densely defined operator T † ∈
C(H2,H1) with domain D(T †) = R(T ) ⊕⊥ R(T )⊥ and has the following
properties;

1. TT †y = P
R(T )

y, for all y ∈ D(T †)

2. T †Tx = PN(T )⊥ x, for all x ∈ D(T )

3. N(T †) = R(T )⊥.

This operator T † is called the Moore-Penrose inverse of T .

The following property of T † is also well known. For every y ∈ D(T †),
let

L(y) := {x ∈ D(T ) : ||Tx− y|| ≤ ||Tu− y|| ∀ u ∈ D(T )}.

Here any u ∈ L(y) is called a least square solution (lss) of the operator
equation Tx = y. The vector x = T †y ∈ L(y) and satisfies, ||T †y|| ≤
||x|| ∀ x ∈ L(y) and is called the least square solution of minimal norm
. A different treatment of T † is described in [2, Pages 336, 339, 341], where
the authors call it “the Maximal Tseng generalized Inverse”.

Proposition 2.5 — For a densely defined T ∈ C(H1,H2), the following
statements are equivalent.

1. R(T ) is closed
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2. R(T ∗)is closed

3. T0 := T |C(T ) has a bounded inverse

4. there exists a k > 0 such that ‖Tx‖ ≥ k‖x‖, for all x ∈ C(T )

5. T † is bounded

6. R(T ∗T ) is closed

7. R(TT ∗) is closed.

In the following proposition we list some well known facts.

Proposition 2.6 — Let T ∈ C(H1,H2) be a densely defined operator.
Then

1. N(T ) = R(T ∗)⊥

2. N(T ∗) = R(T )⊥

3. N(T ∗T ) = N(T ) and

4. R(T ∗T ) = R(T ∗).

Lemma 2.7 — [4, Lemma 5.1] Let A ∈ C(H1,H2) be densely defined.
Then

1. (I + A∗A)−
1
2 and A(I + A∗A)−

1
2 are bounded

2. ‖(I + A∗A)−
1
2 ‖ ≤ 1 and ‖A(I + A∗A)−

1
2 ‖ ≤ 1.

Theorem 2.8 — Let {Hk}, k = 1, 2, 3, . . . be closed subspaces of H and
let Pk = PHk

. Suppose {Pk} is a monotone(Hk ⊆ HK+1 or Hk+1 ⊆ Hk)
sequence of orthogonal projections. Then the strong limit P = lim

k→∞
PHk

exists and P is the projection onto ∩kHk in case Pk is non-increasing and
onto ∪kHk if {Pk} is non-decreasing.

Theorem 2.9 — [Uniform boundedness principle] [5, Theorem 14.3,
Page 83]. Let X be a Banach space and Y be a normed linear space. Suppose
F is a subset of B(X,Y ) with the property that for each x ∈ X, sup

A∈F
||Ax|| <

∞. Then sup
A∈F

||A|| < ∞.
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3. Generalized Projection Methods

3.1 The Method and a Characterization. Let T ∈ C(H1,H2) be densely
defined with closed and separable range. Let {Yn} be an increasing sequence
of subspaces of R(T ) such that ∪∞n=1Yn = R(T ) and {Xn}, an increasing
sequence of subspaces of N(T )⊥ such that ∪∞n=1Xn = N(T )⊥. Let Pn :
H2 → H2 and Qn : H1 → H1 be sequences of bounded projections with
R(Pn) = Yn and R(Qn) = Xn for each n.

Let Tn := PnTQn and T̂n = Tn|Xn . Our aim is to approximate the least
square solution of minimal norm of Equation (1). To do this we find the
least square solution of minimal norm xn of the finite system of equations

T̂nx = Pny (2)

and expect that xn = T̂ †nPny → x = T †y for every y ∈ H2. This is the idea
of the projection methods. The operators T̂n are known as sections. If these
sections are finite dimensional, these are known as finite sections and the
method of approximating the solution with the help of these finite sections
is called a finite section method.

We now give a formal definition of the convergence of this generalized
projection method.

Definition 3.2 — Suppose T ∈ C(H1, H2) is densely defined and has
a closed range. Let Pn and Qn be bounded projections on H2 and H1

respectively with dimR(Pn) = n = dimR(Qn) such that

1. Pny → PR(T )y for all y ∈ H2

2. Qnx → PN(T )⊥x for all x ∈ H1

3. Qnu ∈ N(T̂n)⊥ for all u ∈ C(T )

4. Qnx ∈ D(T ) for all x ∈ D(T )

5. TQnx → Tx for all x ∈ D(T ).

Then the sequence of pairs {Pn, Qn} is said to be admissible for T .
The generalized projection method for T is said to converge with
respect to {Pn, Qn} if for each y ∈ H2, T̂ †nPny → T †y.
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Remark 2.3 : The condition that Qnx ∈ D(T ) for all x ∈ D(T ) is
equivalent to the condition R(Qn) ⊆ D(T ) for all n [12, Proposition 2.7].

The following theorem provides a criterion for the convergence of the
generalized projection method. This is analogous to [12, Theorem 3.1], which
was proved for closed operators with bounded inverse.

Theorem 3.4 — Let T ∈ C(H1,H2) be densely defined with closed and
separable range. Let {Pn, Qn} be an admissible sequence for T . Then the
generalized projection method for T is convergent with respect to the pair
{Pn, Qn} if and only if the operators T̂ †n are uniformly bounded.

Proof : Assume that the generalized projection method for T is con-
vergent. That is T̂ †nPny → T †y for all y ∈ H2 . Hence by Theorem 2.9,
m := sup

n
||T̂ †nPn|| < ∞. Next, let z ∈ R(Pn). Then Pnz = z. Hence

||T̂ †nz|| = ||T̂ †nPnPnz|| ≤ m||Pnz|| = m||z||.

Hence ||T̂ †n|| ≤ m.

Conversely, assume that sup
n
||T̂ †n|| := M < ∞. Consider

||xn −QnT †y|| = ||xn − P
N(bTn)⊥QnT †y|| (by condition (3) of Definition ??)

= ||T̂ †nPny − T̂ †nT̂nQnT †y||
≤ ||T̂ †n||||Pny − T̂nQnT †y||
≤ M ||Pny − T̂nQnT †y||
= M ||Pny − TnT †y|| (since Q2

n = Qn)

→ M ||PR(T )y − PR(T )y|| = 0

Now ||xn − T †y|| ≤ ||xn −QnT †y||+ ||QnT †y − T †y|| → 0 as n →∞. ¥

Example 3.5 — Let H = The real space L2[0, π] of real valued functions,
AC[0, π] := {φ ∈ H : φ is absolutely continuous} and H ′ = {φ ∈ AC[0, π] : φ′ ∈ H}.
Let L = d

dt with D(L) = {φ ∈ H ′ : φ(0) = φ(π) = 0}.

Using the fundamental theorem of integral calculus it can be shown that

L ∈ C(H). Since the functions φn(t) =
√

2
π sinnt, t ∈ [0, π] (n ∈ N), forms

an orthonormal basis of H, L is densely defined.
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Note that R(L) = {y ∈ H :
∫ π
0 y(t)dt = 0} = {1}⊥ is closed. It can be

shown that L∗ = − d
dt with D(L∗) = AC[0, π]. Let ψn =

√
2
π cosnt, t ∈

[0, π], n ∈ N . Then {ψn : n ∈ N} forms an orthonormal basis for R(L).

Now, define Xn := span{φ1, φ2, . . . , φn} and Yn = LXn = span{ψ1, ψ2, . . . ψn}.
Let Pn, Qn : H → H be orthogonal projections such that R(Pn) = Yn

and R(Qn) = Xn. That is Pny =
∑n

j=1〈y, ψj〉ψj , y ∈ H and Qnx =∑n
i=1〈x, φi〉φi, x ∈ H.

Let Ln = PnLQn and L̂n = Ln|Xn . For x ∈ Xn we have

L̂nx = PnLQnx = PnLx = PnL
( n∑

j=1

〈x, φj〉φj

)

= Pn

( n∑

j=1

〈x, φj〉Lφj

)

= Pn

( n∑

j=1

〈x, φj〉jψj

)

=
n∑

j=1

〈x, φj〉jPn(ψj)

=
n∑

j=1

j〈x, φj〉ψj .

Hence for any x ∈ D(T ), LQnx =
∑n

j=1 j〈x, φj〉ψj → Lx. And {Pn, Qn}
satisfy the conditions of Definition 3.2. Hence {Pn, Qn} is admissible for L.

Using the formula L̂†n = (L̂∗nL̂n)−1L̂∗n, we get that L̂†ny =
n∑

j=1

1
j
〈y, ψj〉φj .

It can easily be verified that ||(L̂n)†|| ≤ 1 for all n ∈ N and L̂†nPny →
∞∑

n=1

1
n
〈y, ψn〉φn = L†y for each y ∈ H. The expression that we have ob-

tained for L†y is equivalent to the following formula: (L†y)(s) =
∫ s
0 y(t)dt−

s
π

∫ π
0 y(t)dt, 0 ≤ s ≤ π (for details see [9]).

4. Existence of Admissible Sequence of Projections

We have observed in the previous section that the generalized projection
methods depend on the given operator and the admissible sequences of pro-
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jections {Pn, Qn}. In the case of a bounded operator, it is easy to find
such an admissible sequence. We can choose any pair of sequences {Pn, Qn}
satisfying the conditions

1. Pny → PR(T ) y for every y ∈ H2 and

2. Qnx → PN(T )⊥ for every x ∈ H1.

Then, in view of the continuity of T , the assumptions (3), (4) and (5) of
Definition 3.2 are satisfied. Hence a natural question one can ask is whether
it is possible to find an admissible sequence {Pn, Qn} for a given densely
defined operator with closed and separable range. In this section we answer
this question affirmatively.

Proposition 4.1 — Let T ∈ C(H1,H2) be densely defined. Then

1. (I + T ∗T )−1 ∈ B(H1), (I + TT ∗)−1 ∈ B(H2)

2. If g ∈ C[0, 1], then g
(
(I +T ∗T )−1

)
T ∗ ⊆ T ∗g

(
(I +TT ∗)−1

)
and g

(
(I +

TT ∗)−1
)
T ⊆ Tg

(
I +TT ∗)−1

)
. In particular, ||T (I +T ∗T )−1|| ≤ 1

2
and

||T ∗(I + TT ∗)−1|| ≤ 1
2
.

Lemma 4.2 — Let T ∈ C(H1,H2) be densely defined. Let C := T (I +
T ∗T )−

1
2 and D := T ∗(I + TT ∗)−

1
2 . Then

1. R(C∗C) = R(T ∗T ), R(CC∗) = R(TT ∗) and R(D∗D) = R(TT ∗), R(DD∗) =
R(T ∗T )

2. N(C) = N(T ) and N(D) = N(T ∗)

3. If R(T ) is closed, then R(C) = R(T ) and R(D) = R(T ∗). Conse-
quently, R(C) and R(D) are also closed.

Proof : Note that C∗ = T ∗(I+TT ∗)−
1
2 and CC∗ = TT ∗(I+TT ∗)−1. By

[8, Section 2], R(CC∗) = R(TT ∗). A similar argument holds for R(C∗C) =
R(T ∗T ). The proof of R(D∗D) = R(TT ∗), R(DD∗) = R(T ∗T ) follows by
the observation that D = C∗.

The statement (2) follows from Proposition 2.6. We have R(C) = R(T ).
Hence if R(T ) is closed, then R(C) is also closed and R(C) = R(T ). Again
R(T ) is closed imples that R(T ∗) is closed. Hence R(D) = R(T ∗). ¥
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Lemma 4.3 — Let T ∈ C(H1,H2) be densely defined. Let Yn ⊆ R(T ) be
such that

(a) Yn ⊆ Yn+1 for each n ∈ N

(b) dimYn = n

(c) ∪∞n=1Yn = R(T ).

Let Zn := (I + TT ∗)−1Yn and Xn := T ∗Zn = T ∗(I + TT ∗)−1Yn. Then

1. Xn ⊆ Xn+1 · · · ⊆ N(T )⊥, dimXn = n and

2. ∪∞n=1Zn = R(T )

3. ∪∞n=1Xn = R(T ∗)

4. ∪∞n=1TXn = R(T ).

Proof : By the definition of Xn, Xn ⊆ C(T ) ⊆ N(T )⊥ = R(T ∗) for
all n and Xn ⊆ Xn+1. Since the operator T ∗(I + TT ∗)−1|

R(T )
is injective

dimXn = n = dimYn.

For a proof of (2), we make use of the following observation:

(I + TT ∗)−1(R(T )) = R(T ).

It can be proved easily that (I + TT ∗)−1(N(TT ∗)) = N(TT ∗). By the
Projection Theorem [13, 21.1, Page 420], H2 = N(TT ∗)⊕⊥N(TT ∗)⊥. That
is H2 = N(TT ∗)⊕⊥ R(TT ∗). But

(I + TT ∗)−1(H2) = D(TT ∗) = N(TT ∗)⊕⊥ C(TT ∗).

Hence

(I + TT ∗)−1H2 = (I + TT ∗)−1
(
N(TT ∗)⊕⊥ R(TT ∗)

)

= N(TT ∗)⊕⊥ (I + TT ∗)−1(R(TT ∗)).

From this we can conclude that (I + TT ∗)−1(R(TT ∗)) = C(TT ∗) and
as C(TT ∗) = N(TT ∗)⊥, we have (I + TT ∗)−1(R(TT ∗)) = R(TT ∗). Hence
(I + TT ∗)−1(R(T )) = R(T ), by Proposition (2.6). Thus
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R(T ) = (I + TT ∗)−1(R(T )) = (I + TT ∗)−1(∪∞n=1Yn)

= ∪∞n=1(I + TT ∗)−1Yn

= ∪∞n=1Zn.

This proves (2).

It is clear that ∪∞n=1Xn ⊆ R(T ∗) = N(T )⊥.

Suppose ∪∞n=1Xn ( N(T )⊥. Then there exists a 0 6= z0 ∈ N(T )⊥ such
that z0 ∈ (∪∞n=1Xn)⊥. That is

〈z0, T
∗(I + TT ∗)−1y〉 = 0 for all y ∈ R(T )

By the continuity of T ∗(I + TT ∗)−1, this holds for all y ∈ R(T ).

We claim that this holds for all y ∈ H2. Let y ∈ H2. Then y = u + v for
some u ∈ R(T ) and v ∈ R(T )⊥ = N(T ∗) ⊆ D(T ∗). Hence by Proposition
4.1, T ∗(I + TT ∗)−1v = (I + T ∗T )−1T ∗v = 0. Hence

〈z0, T
∗(I + TT ∗)−1y〉 = 〈z0, T

∗(I + TT ∗)−1u〉 = 0.

This proves the claim.

Next, since C(T ) = N(T )⊥ [11, Lemma 3.3], there exists a sequence
{zn} ⊆ C(T ) such that zn → z0. Hence for all y ∈ H2,

0 = 〈z0, T
∗(I + TT ∗)−1y〉 = lim

n→∞〈zn, T ∗(I + TT ∗)−1y〉
= lim

n→∞〈Tzn, (I + TT ∗)−1y〉
= lim

n→∞〈(I + TT ∗)−1Tzn, y〉
= lim

n→∞〈T (I + T ∗T )−1zn, y〉.

This shows that T (I + T ∗T )−1zn
w−→ 0 (weakly), but since T (I + T ∗T )−1

is bounded, we have T (I + T ∗T )−1z0 = 0. That is (I + T ∗T )−1z0 ∈ N(T ).
Let y = (I + T ∗T )−1z0. Then Ty = 0. Hence z0 = (I + T ∗T )y = y ∈ N(T ).
Thus z0 ∈ N(T ) ∩ N(T )⊥ = {0}. Hence z0 = 0, a contradiction to our
assumption. This proves (3).
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Using a similar argument we can prove (4). ¥

Theorem 4.4 — Let T ∈ C(H1,H2) be densely defined with closed and
separable range. Then there exists a sequence {Pn, Qn} of projections with
finite dimensional ranges which is admissible for T .

Proof : Choose a sequence {Xn} of subspaces of C(T ) such that

(a) Xn ⊆ Xn+1 for each n

(b) dimXn = n

(c) ∪∞n=1Xn = N(T )⊥.

Let Yn := TXn. Then

1. Yn ⊆ Yn+1 for each n

2. dimYn = n

3. ∪∞n=1Yn = R(T ).

Since T |C(T ) : C(T ) → R(T ) is bijective, we have dimYn = dimXn = n.
It is clear by the linearity of T that Yn ⊆ Yn+1 for each n. Also ∪∞n=1Yn ⊆
R(T ). We prove that these two subspaces are equal. If ∪∞n=1Yn ⊂ R(T ), then
there exists 0 6= z ∈ R(T ) such that z ∈ (∪∞n=1Yn)⊥. Hence for all x ∈ Xn, we
have 〈z, Tx〉 = 0. The map (I +T ∗T )−

1
2 : H → D(T ) is bijective map. With

the help of Proposition 4.1, it can be shown that (I+T ∗T )−
1
2 (N(T )) = N(T )

and (I +T ∗T )−
1
2 (N(T )⊥) = C(T ). Since Xn ⊆ C(T ), there exists subspaces

Zn ⊆ N(T )⊥ such that Xn = (I+T ∗T )−
1
2 (Zn), Zn ⊆ Zn+1, dimZn = dimXn

and ∪nZn = N(T )⊥. Hence

〈z, Tx〉 = 0, for all x ∈ ∪nXn ⇒ 〈z, T (I + T ∗T )−
1
2 y〉 = 0, for all y ∈ ∪nZn.

Since T (I + T ∗T )−
1
2 is bounded by Lemma 2.7, 〈z, T (I + TT ∗)−

1
2 y〉 = 0

for all y ∈ N(T )⊥. Using the projection theorem and statement (2) of
Proposition 4.2, we can show that 〈z, T (I + T ∗T )−

1
2 y〉 = 0, for all y ∈ H1,

concluding z ∈ R(T )⊥ and hence z = 0, which is a contradiction.

Let Pn : H2 → H2 and Qn : H1 → H1 be sequence of orthogonal pro-
jections such that R(Pn) = Yn and R(Qn) = Xn. Let Tn := PnTQn and
T̂n := Tn|Xn . That is T̂n ∈ B(Xn, Yn).
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Claim: {Pn, Qn} is admissible for T .

Since {Pn} and {Qn} are increasing projections, by Theorem 2.8 it follows
that

1. Pny → PR(T ) y for all y ∈ H2

2. Qnx → PN(T )⊥ x for all x ∈ H1.

Next, we prove

Qnx ∈ N(T̂n)⊥ for every x ∈ C(T ). (3)

First we observe that N(T̂n) = N(TQn|Xn). Let x ∈ N(TQn|Xn). Then
TQnx = 0. Hence PnTQnx = 0. That is N(TQn) ⊆ N(T̂n).

For the reverse inclusion, let x ∈ N(T̂n). Then

PnTQnx = PnTx = 0

⇒ Tx ∈ N(Pn) = Y ⊥
n

⇒ Tx ∈ N(Pn) = Y ⊥
n ∩ Yn since Yn = TXn

⇒ Tx = 0

⇒ Qnx ∈ N(T )

⇒ x ∈ N(TQn).

Now we prove (3). Let y ∈ N(T̂n) and x ∈ C(T ). Since x ∈ R(T ∗) =
R(T ∗(I + TT ∗)−

1
2 ) there exists w ∈ H2 such that x = T ∗(I + TT ∗)−

1
2 w.

Thus

〈x, Qny〉 = 〈Qnx, y〉 = 〈T ∗(I + TT ∗)−
1
2 w, Qny〉

= 〈(I + TT ∗)−
1
2 w, TQny〉

= 0 since N(TQn|Xn) = N(T̂n).

Hence for all x ∈ C(T ), Qnx ∈ N(T̂n)⊥.

Also for for every x ∈ D(T ), Qnx ∈ Xn ⊆ D(T ). Hence the condition
(4) is satisfied.

Next we prove that

TQnx → Tx for all x ∈ D(T ). (4)
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If x ∈ D(T ), then Qnx ∈ Xn ⊆ N(T )⊥ = R(T ∗) = R(T ∗(I + TT ∗)−
1
2 ).

Therefore Qnx = T ∗(I+TT ∗)−
1
2 wn, for some wn ∈ N(T ∗)⊥. Hence TQnx =

TT ∗(I + TT ∗)−
1
2 wn. As Qnx → PN(T )⊥x and R(T ∗(I + TT ∗)−

1
2 ) is closed

(by Lemma ??), there exists k > 0 such that

||T ∗(I + TT ∗)−
1
2 wn|| ≥ k ||wn||. (5)

By Proposition 2.5(4) and Lemma 4.2(2), the left hand side of the in-
equality (5) is nth term in a convergent sequence, it follows that the sequence
{wn} is Cauchy and hence convergent.

Assume that wn → w. As T ∗(I + TT ∗)−
1
2 is bounded, Qnx = T ∗(I +

TT ∗)−
1
2 wn → T ∗(I + TT ∗)−

1
2 w = PN(T )⊥ x. Now TQnx = TT ∗(I +

TT ∗)−
1
2 wn → TT ∗(I + TT ∗)−

1
2 w = TPN(T )⊥ x. Since x ∈ D(T ), x = u + v,

where u ∈ N(T ) and v ∈ C(T ). Therefore TPN(T )⊥x = Tv = T (u+v) = Tx.
Hence TQnx → Tx for all x ∈ D(T ).

Now for any x ∈ D(T ),

||PnTQn − Tx|| ≤ ||PnTQnx− PnTx||+ ||PnTx− Tx||
≤ ||Pn|| ||TQnx− Tx||+ ||PnTx− Tx||
≤ ||TQnx− Tx||+ ||PnTx− Tx|| → 0 as n →∞.

Hence {Pn, Qn} is admissible for T .
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