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Abstract. Three Gelfand-Mazur type theorems are proved. One of these pro-
vides a C∗-property analogue of Zalar’s recent generalizations of the Froelich-
Ingelstam-Smiley Theorems concerning unital multiplication in Hilbert spaces;
the second illustrates that the assumption in Kaplansky’s version of the Gel-
fand-Mazur Theorem can be weakened in the presence of a C∗-norm; whereas
the third provides a real analogue of a result due to Srinivasan.

1. Introduction

Let A be a real algebra (assumed to be nonzero and associative throughout).
The celebrated Gelfand-Mazur Theorem [BD, Theorem 14.7, p. 73] states that if A
is a normed division algebra, then A is isomorphic to the reals R or the complex
numbers C or the quaternions H. It follows from the recent work of Zalar [Z] that
the same conclusion is obtained if A is assumed to be a pre-Hilbert space satisfying
either (i) A has identity 1, ‖1‖ = 1, ‖a2‖ ≤ ‖a‖2 for all a ∈ A; or (ii) ‖a2‖ = ‖a‖2 for
all a ∈ A. Theorem 1 below is a “C∗-property analogue” of this “square property”
result, thereby strengthening the analogy between (certain aspects of) C∗-algebras
and uniform Banach algebras envisaged in [B]. Theorem 1 is also closely related
with the Froelich-Ingelstam-Smiley Theorem concerning unital multiplication in
Hilbert space [Fr].

Theorem 1. Let ‖ · ‖ be a Pythagorean norm on a real ∗-algebra A.
(a) Assume that ‖ · ‖ satisfies at least one of the following.
(i) (1) A has identity, ‖1‖ = 1, ‖a∗a‖ ≤ ‖a‖2 for all a ∈ A, and (2) a∗a = 0 ⇒

a = 0, (a ∈ A).
(ii) ‖a∗a‖ = ‖a‖2 for all a ∈ A.

Then A is isomorphic to R or C or H.
(b) Suppose A is a complex ∗-algebra. Assume that at least one of the following

holds.
(i) A has identity, ‖a∗a‖ ≤ ‖a‖2 for all a ∈ A and ‖1‖ = 1.
(ii) ‖a∗a‖ = ‖a‖2 for all a ∈ A.

Then A ∼= C.
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A Pythagorean norm on A is a norm ‖ · ‖ on A such that (A, ‖ · ‖) is a normed
linear space satisfying

‖a + b‖2 + ‖a− b‖2 = 2‖a‖2 + 2‖b‖2 (a, b ∈ A).

We shall show that in (a) above, the condition (2) in (i) cannot be omitted. Thus a
comparison of (a) and (b) brings out an essential difference between real *-algebras
and complex *-algebras. Theorem 1 will be derived from the following more general
result.

Theorem 2. Let A be a real *-algebra with identity 1. Let Sym A = {a ∈ A : a∗ =
a}. Assume that

a∗a = 0 implies a = 0 for a ∈ A.(∗)
Let ‖ · ‖ be a norm on Sym A. Suppose for all a, b in Sym A satisfying ab = ba, that

‖a + b‖2 + ‖a− b‖2 = 2‖a‖2 + 2‖b‖2.

Assume that at least one of the following holds.
(i) ‖1‖ = 1, ‖a2‖ ≤ ‖a‖2 (a ∈ Sym A).
(ii) ‖a2‖ = ‖a‖2 for all a ∈ Sym A.

Then A is isomorphic to R or C or H.

A real C∗-algebra [G] is a real ∗-algebra A with a norm ‖ · ‖ such that ‖ab‖ ≤
‖a‖ ‖b‖, ‖a∗a‖ = ‖a‖2 for all a, b ∈ A; and for each a ∈ A, 1 + a∗a is invertible in
the unitization Ae of A.

Theorem 3. (a) Let A be a real C∗-algebra. Assume that at least one of the
following holds.

(i) A has identity, |h| = ±h for all h ∈ Sym A.
(ii) Sym A has no nonzero zero divisor.

Then A is isomorphic to R or C or H.
(b) Let A be a complex C∗-algebra satisfying at least one of the above (i) or (ii)

or the following
(iii) A is unital and for each h ∈ Sym A, eih has convex spectrum.

Then A is isomorphic to C.

Part (b) of the above theorem with assumption (iii) improves a known result that
a complex unital C∗-algebra in which each unitary element has convex spectrum is
isomorphic to C. We do not know an appropriate real analogue of assumption (iii).
Theorem 3 with assumption (ii) throws further light on the comparison between
C∗-algebras and uniform Banach algebras mentioned above in view of the fact
that there are nontrivial uniform algebras (e.g. the disc algebra) that are integral
domains. Further, Kaplansky’s version of the Gelfand-Mazur Theorem states that
a real normed algebra admitting no nonzero topological zero divisors is isomorphic
to R or C or H [GP]. Theorem 3 shows that in the presence of the C∗-property, the
assumption concerning topological zero divisors can be weakened. The following
exhibits another such instance.

Theorem 4. Let A be a real Banach algebra with identity 1. Suppose that A has
no nonzero zero divisors and A is locally finite. Then A is isomorphic to R or C
or H.
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This improves a result of Srinivasan [S]. He proved it for commutative algebras
over C. However, the proof by Srinivasan contains a gap which was rectified by
Heinze [He] who proved that an associative locally finite algebra which is an integral
domain (hence commutative) over an algebraically closed field is isomorphic to the
ground field.

A (complex or real) normed algebra (A, ‖ · ‖) with identity 1 is locally finite if
for each h ∈ A the smallest (not necessarily closed) subalgebra containing h and 1
is finite dimensional.

2. Proofs

(2.1) Lemma. Let A be a unital real ∗-algebra satisfying a∗a = 0 implies a = 0
(a ∈ A).

(i) If Sym A is isomorphic to R, then A is ∗-isomorphic to R or C or H with the
usual involution.

(ii) If Sym A is isomorphic to C, then A is ∗-isomorphic to C with the identity
involution.

Proof. Define SkewA = {a ∈ A : a∗ = −a}. Then A = SymA ⊕ Skew A. Let
a ∈ A, a 6= 0. By the assumption, a∗a 6= 0. Since a∗a ∈ Sym A, and since Sym A
will be assumed to satisfy either the hypothesis of (i) or (ii), then a∗a is a nonzero
real or complex number, hence invertible. It follows now that a is invertible in A.
Thus A is a division algebra. (Note that if A is a normed algebra, this immediately
gives the conclusion).

Case (i). Suppose Sym A ∼= R.
Let a ∈ A. Then a = h + k for some h ∈ Sym A, k ∈ Skew A. Thus (a − h)2 =

k2 − k∗k. Since h and k∗k are in Sym A, we have a = α1, k∗k = β1 for some α, β
in R. Then (a− α)2 + β = 0. Thus every element in A is algebraic over R (in fact,
of degree ≤ 2). Hence by the Frobenius Theorem, A is isomorphic to R, C or H.

Case (ii). Suppose SymA ∼= C.
Let u ∈ Skew A. Let w = iu + ui. Since u∗ = −u and i∗ = i as i ∈ Sym A,

we have w∗ = −ui − iu = −w ∈ Skew A. Further, iw = −u + iui, wi = iui − u;
and so wλ = λw for all λ = λ1 ∈ C. Also w2 = −w∗w ∈ Sym A; and so w2 = α2

for some α ∈ C. Now since wα = αw, we have (w − α)(w + α) = w2 − α2 = 0.
Thus w = ±α ∈ C, i.e., w ∈ Sym A. Now w = 0 as w ∈ Sym A ∩ Skew A. Thus
iu + ui = 0. Hence iu = −ui = (iu)∗, iu ∈ Sym A ∼= C, and so u ∈ C = Sym A.
Thus u ∈ Sym A ∩ Skew A = {0}. We have shown that SkewA = {0}. Hence
A = Sym A ∼= C.

(2.2) Lemma. Let A be a real ∗-algebra with identity 1. Let ‖ · ‖ be a norm on
Sym A. Suppose for all a, b in Sym A with ab = ba, that ‖a + b‖2 + ‖a − b‖2 =
2‖a‖2 + 2‖b‖2. Assume that at least one of the following holds.

(i) ‖1‖ = 1, ‖a2‖ ≤ ‖a‖2, for all a ∈ Sym A.
(ii) ‖a2‖ = ‖a‖2 for all a ∈ Sym A.

Then Sym A is isomorphic to R or C.

Proof. Let a ∈ Sym A. Let P denote the algebra of all polynomials p(x) with real
coefficients in one indeterminate x including the constants. Let B = {p(a) : p ∈ P}.
Then B is a commutative algebra contained in SymA. Thus B is a real commutative
algebra with 1 satisfying ‖1‖ = 1 and ‖u2‖ ≤ ‖u‖2 for all u ∈ B. Also, B is an
inner product space. Hence by [Z, Theorem 1, p. 1418], B ∼= R or C. (Of course,
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being commutative B cannot be quaternions or octonions.) Hence a = λ1 for some
λ ∈ R or C. Hence SymA ∼= R or C.

(2.3) Theorem 2 follows immediately from Lemmas 2.1 and 2.2.

(2.4) Proof of Theorem 1. (a) (i) follows immediately from Theorem 2.
(ii) In view of (i) it is enough to show that A has identity 1 and ‖1‖ = 1. Let

a ∈ Sym A be a nonzero element of A. Let B be the algebra of all polynomials in
a with real coefficients without constant terms. Then B is a commutative algebra
with a Pythagorean norm. Further, since every u ∈ B is selfadjoint, we have
‖u2‖ = ‖u∗u‖ = ‖u‖2 for all u ∈ B. Hence by [Z, Theorem 3], B is isomorphic to
R or C (since B is commutative it cannot be isomorphic to H). In particular, B
has a unit, say e. We show below that e is the identity of A as well. Our argument
is similar to the one in [Z, Theorem 3].

Note that e2 = e, ‖e‖ = 1 and e∗ = e. Let x ∈ A. Suppose that b = x− xe 6= 0.
Now be = 0. Let y = b∗b

‖b‖2 . Then y∗ = y, ‖y‖ = 1 and ye = 0. Consequently,
(ye)∗ = ey = 0. Since (e + y)∗ = e∗ + y∗ = e + y, we have ‖e + y‖2 = ‖(e + y)2‖ =
‖e2 + ey + ye + y2‖ = ‖e + y2‖ = ‖e − ey − ye + y2‖ = ‖(e − y)2‖ = ‖e − y‖2.
Hence, ‖e + y‖2 = (1/2){‖e + y‖2 + ‖e + y‖2} = (1/2){‖e + y‖2 + ‖e − y‖2} =
(1/2){2‖e‖2 + 2‖y‖2} = 2. Then 4 = ‖e + y‖4 = {‖e + y‖2}2 = ‖e + y2‖2 =
〈e+ y2, e+ y2〉 = ‖e‖2 + ‖y2‖2 +2〈e, y2〉 = 2+2〈e, y2〉. Thus 〈e, y2〉 = 1 = ‖e‖ ‖y2‖
(the equality in the Schwarz inequality). And so, e = y2. But then 1 = ‖y‖4 =
‖y2‖2 = ‖y4‖ = ‖y2e‖ = 0. This shows that b = 0, i.e., xe = x. Similarly, ex = x.
This completes the proof of (a).

(b) (i) Assume (i). So A is a real ∗-algebra. So, by Lemma 2.2(i), SymA ∼= R or
C. Since A is a complex algebra i∗ = −i, as a result SymA must be R. But then
A ∼= Sym A⊕ i Sym A = R⊕ iR ∼= C.

(ii) Assume (ii). By (a) (ii) A ∼= R of C or H. Being a complex algebra A ∼= C.
(Alternatively, the completion B of A is a C∗-algebra which is a complex Hilbert
space, hence B is strictly convex. Therefore, {x ∈ B : ‖x‖ = 1} is the set of all
extreme points of {x ∈ B : ‖x‖ ≤ 1}. As a result, B has an identity 1 and ‖1‖ = 1.)

(2.5) Proof of Theorem 3. (a) Let a ∈ Sym A and C be the ‖ · ‖-completion of the
subalgebra B of A generated by a and 1. Note that C can be identified with a
subalgebra of A. Hence, if A satisfies (i) or (ii), then so does C. Therefore C
is a commutative real C∗-algebra [G] in which the spectrum of every element is
contained in the real line. Hence by an ancient Theorem of Arens, C is isomorphic
to CR(X) for some compact Hausdorff space X . Let x1, x2 be two distinct points
of X . If (i) holds, then by Urysohn’s lemma, there exists h ∈ CR(X) such that
h(x1) = 1, h(x2) = −1. But then |h| 6= ±h, contradicting (i). If (ii) holds, then by
a similar argument there exist g1, g2 in CR(X) such that g1 6= 0 6= g2 but g1g2 = 0,
contradicting (ii). Thus, in any case X must be a singleton and hence a must be a
real multiple of the identity. So SymA ∼= R. This proves (a) by Lemma 2.1.

(b) If (i) or (ii) holds, then arguments parallel to that in (a) prove the conclusion.
So assume (iii). Let us fix h ∈ Sym A. Since eih is a unitary element, sp(eih) ⊂
Γ = {z ∈ C : |z| = 1}. But the only convex subsets of Γ are singletons. So, sp(eih)
must be a singleton. Now let λ1, λ2 ∈ sp(h) and λ1 < λ2. Define

y =
2(h− λ1)
λ2 − λ1

+ 1.
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It is clear that y ∈ Sym A. Since λ1, λ2 ∈ sp(h), 1, 2 ∈ sp(y). As a result ei, e2i ∈
sp(eiy), which is a contradiction. As a result, sp(h) must be a singleton and the
proof follows.

The following is a real analogue of [S, Theorem 2.2].

(2.6) Lemma. Let A be a real Banach algebra which is an integral domain. The
following conditions are equivalent for h ∈ A.

(i) h is not a topological divisor of zero.
(ii) The principal ideals Ah and hA generated by h are closed.

Proof. Suppose Ah is not closed. Then there is a sequence {anh} in A such that
anh → a and a /∈ Ah. It follows that {an} is not a Cauchy sequence (otherwise
an → b implies a = bh ∈ Ah). Since {an} is not Cauchy there exists an ε > 0
and subsequence {ani} of {an} such that ‖ani − anj‖ > ε for all i, j. Let bni =

ani
−ani+1

‖ani
−ani+1‖ . Then ‖bni‖ = 1 and bnih → 0. Thus h is a topological divisor of zero.

Similarly if hA is not closed, then h is also a topological divisor of zero.
Conversely, suppose that Ah and hA are closed. Define Rh : A → (Ah) by

Rh(a) = ah (a ∈ A) and Lh : A → (hA) by Lh(a) = ha (a ∈ A). Since A is an
integral domain, Lh and Rh are one-one. But then since hA and Ah are closed,
the open mapping theorem implies that they are homeomorphisms. So there exist
M1, M2, N1, N2 > 0 such that M1‖a‖ ≤ ‖ah‖ ≤ M2‖a‖ and N1‖a‖ ≤ ‖ha‖ ≤
N2‖a‖. Now for any sequence {an} in A, anh → 0 or han → 0 implies that an → 0.
Hence h cannot be a topological divisor of zero.

(2.7) Corollary. Let a real Banach algebra A be an integral domain in which all
principal ideals are closed. Then A is isomorphic to R or C or H.

Proof. By the above theorem A does not contain a topological divisor of zero. Hence
by the real version of Kaplansky’s result, A is isomorphic to R or C or H.

(2.8) Proof of Theorem 4. Let a ∈ A and C be the ‖ · ‖-completion of the algebra
B generated by a and 1. Then C is a commutative unital finite dimensional algebra
with 1 which is an integral domain. Because of the finite dimensionality of C all
the ideals (and hence all the principal ideals) of C are closed. Consequently, C does
not contain any topological divisors of zero. But then C is isomorphic to R or C or
H. As a result, a is invertible in C and hence in A. Now the conclusion follows by
the classical Gelfand-Mazur Theorem.

3. Remarks

(3.1) Let u 6= 0 be such that u2 = 0, e.g. u = ( 0 1
0 0 ). Let A = {α + βu : α, β ∈ R},

(α+βu)∗ = α−βu. Then A is a unital real ∗-algebra in which SymA ∼= R. However,
A is not isomorphic to R or C or H. This shows that the condition a∗a = 0 ⇒ a = 0
cannot be omitted from Lemma 2.1 as well as from Theorem 1(a)(i).

(3.2) The algebra R × R with pointwise multiplication and the Euclidean norm
‖(z1, z2)‖2 = (|z1|2 + |z2|2)1/2 satisfies everything in Theorem 1(a)(i) except ‖1‖2 =
1. Thus we cannot drop the condition of the norm being unital in (i) of (a) and (b)
of Theorem 1. This also shows that the condition ‖a∗a‖ ≤ ‖a‖2 cannot be weakened
to ‖a∗a‖ ≤ K‖a‖2 (a ∈ A). Indeed on R2, |(z1, z2)| = (1/2)1/2‖(z1, z2)‖2 defines
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a Pythagorean norm having |1| = 1, |a∗a| ≤ 21/2|a|2 (a ∈ R2). Also, the non-
Pythagorean max-norm ‖ · ‖∞ on R2 is equivalent to ‖ · ‖2 and satisfies ‖1‖∞ = 1.
Thus the condition that ‖ · ‖ is Pythagorean cannot be replaced by the condition
that ‖ · ‖ is equivalent to a Pythagorean norm.

(3.3) The disc algebra A(D) with the involution f∗(z) = f(z) and norm |f | =
sup{|f(z)| : z ∈ [−1, 1]} illustrates that completeness cannot be dropped from
Theorem 3 (b) (ii).

(3.4) (i) Let A be a hermitian Banach ∗-algebra. Assume (iii) of Theorem 3. Our
proof shows that A is R or C or H. Does this hold if instead we assume that A has
no nonzero zero divisors?

(ii) Let A be a ∗-semisimple Banach ∗-algebra with unique (not necessarily com-
plete) C∗-norm. Let A have no nonzero zero divisors. Is A isomorphic to R or C
or H?

(iii) Let A be a unital linear associative algebra. Let p be a seminorm on A such
that p(1) = 1. Suppose either (a) p(a2) ≤ p(a)2 for all a; or (b) A is a ∗-algebra and
p(a∗a) ≤ p(a)2 for all a. If p is Pythagorean, does it follow that p(ab) ≤ p(a)p(b)
for all a, b in A? If A is commutative and if (a) holds, then this is true. (Indeed
given a, b in A, ab = ba gives 4ab = (a + b)2 + (a− b)2. Hence

4p(ab) ≤ p((a + b)2) + p((a− b)2)

≤ (p(a + b))2 + (p(a− b))2 = 2p(a)2 + 2p(b)2.

Hence p(a) ≤ 1, p(b) ≤ 1 implies p(ab) ≤ 1. It follows that p(ab) ≤ p(a)p(b)
for all a, b.) In the absence of the Pythagorean assumption the power inequality
p(an) ≤ p(an) (a ∈ A, n ∈ N) does not imply p(ab) ≤ p(a)p(b), as is exhibited by
the numerical radius in Banach algebras. Does weak submultiplicativity p(ab) ≤
Mp(a)p(b) follow under any of the assumptions (a) or (b)?

(iv) A comparison of Theorem 1 with the C∗-algebra characterization by Glimm-
Kadison as well as by Vowden [BD, Theorem 15, p. 212] suggests: Can we replace
‖a∗a‖ ≤ ‖a‖2 (respectively, ‖a∗a‖ = ‖a‖2) by ‖a∗a‖ ≤ ‖a∗‖ ‖a‖ (respectively, by
‖a∗a‖ = ‖a∗‖ ‖a‖) in Theorem 1?
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Note added in proof

In connection with the question discussed in remark 3.4(iii), lately it has come to
our notice that R. Arens, M. Goldberg and W. A. J. Luxemburg (Multiplicativity
factors for seminorms II, J. Math. Anal. Appl. 170(2) (1992), 401–413) have
shown that (a) if p is a seminorm on a commutative algebra A satisfying (iii)(a),
then p(xy) ≤ 2p(x)p(y) (x, y ∈ A) where the inequality is best possible, and (b)
there exist non-commutative algebras with non-weakly submultiplicative seminorms
and norms satisfying (iii)(a) above.
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