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The following results are proved.

Theorem 0.1 (The Null Space Theorem). Let X, Y be vector 
spaces, P ∈ L(X), Q ∈ L(Y ) be projections and T ∈ L(X, Y )
be invertible. (The restriction of QTP to R(P ) can be viewed 
as a linear operator from R(P ) to R(Q). This is called a
section of T by P and Q and will be denoted by TP,Q.) Then 
there is a linear bijection between the null space of the section 
TP,Q of T and the null space of its complementary section 
T−1
IY −Q,IX−P of T−1.

Theorem 0.2. Let X be a Banach space with a Schauder basis 
A = {a1, a2, . . .}. Let T be a bounded (continuous) linear 
operator on X. Suppose the matrix of T with respect to A
is tridiagonal. If T is invertible, then every submatrix of the 
matrix of T−1 with respect to A that lies on or above the main 
diagonal (or on or below the main diagonal) is of rank ≤ 1.
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1. Introduction

This note has two objectives. The first is to make the Nullity Theorem known more 
widely. The second is to consider its generalization to infinite dimensional spaces and 
some applications of this generalization. We begin with some motivation for the Nullity 
Theorem.

Recall that a square matrix A = [αij ] of order n is called tridiagonal if

αij = 0 for |i− j| > 1

Such a matrix is described completely by 3n − 2 numbers (n on the main diagonal 
and n − 1 on each of superdiagonal and subdiagonal). In general, if a tridiagonal matrix 
is invertible, its inverse need not be tridiagonal. However, we may still expect that the 
inverse can be described completely by 3n −2 parameters. This is indeed true. It is known 
that if A is a tridiagonal matrix of order n and if A is also invertible, then every submatrix 
of A−1 that lies on or above the main diagonal is of rank ≤ 1. Similar statement is true 
of submatrices lying on or below the main diagonal. This result is known at least since 
1979 (see [2]). Several proofs of this result are available in the literature. The article 
[7] contains some of these proofs, references to these and other proofs and also a brief 
history and comments about possible generalizations.

In view of this result, the inverse can be described using 3n −2 parameters as follows: 
To start with we can choose 4n numbers aj , bj , cj , dj , j = 1, . . . , n such that

(
A−1)

ij
= aibj for i ≤ j and

= cidj for j ≤ i

These 4n numbers have to satisfy the following constraints

aibi = cidi for i = 1, . . . , n and a1 = 1 = b1.

One proof of this theorem depends on the Nullity Theorem. This theorem uses the idea 
of complementary submatrices. Let A and B be square matrices of order n. Suppose M is 
a submatrix of A and N is a submatrix of B. We say that M and N are complementary if 
row numbers not used in one are the column numbers used in the other. More precisely, 
let I and J be subsets of the set {1, 2, . . . , n} and let Ic denote the complement of I. Let 
A(I, J) denote the submatrix of A obtained by choosing rows in I and columns in J . 
Then A(I, J) and B(Jc, Ic) are complementary submatrices. With this terminology, the 
Nullity Theorem has a very simple formulation.

Theorem 1.1 (Nullity Theorem). Complementary submatrices of a square matrix and its 
inverse have the same nullity.
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As an illustration we can consider the following. Suppose k < n and a square matrix 
M of order n is partitioned into submatrices as follows:

M =
[
Ak Bk

Ck Dk

]

Here Ak is the submatrix obtained from A by choosing the first k rows and the first k
columns. Assume that M is invertible and its inverse is partitioned similarly as follows:

M−1 =
[
Pk Qk

Rk Sk

]

Then the Nullity Theorem says that

nullity(Ak) = nullity(Sk), nullity(Dk) = nullity(Pk)

nullity(Bk) = nullity(Qk), nullity(Ck) = nullity(Rk)

This Nullity Theorem has been in the literature for quite some time (at least since 
1984), but it does not seem to be that widely well known. In [7], Gilbert Strang and Tri 
Ngyuen have given an account of this Nullity Theorem. They have given a proof of this 
theorem and discussed its consequences for ranks of some submatrices. In particular, 
they prove a very interesting fact that the submatrices of a banded invertible matrix 
lying above or below the main diagonal have low ranks. While discussing literature and 
alternative proofs, the authors make the following remark.

“A key question will be the generalization to infinite dimensions”.
We attempt such a generalization in this note. It is called the “Null Space Theorem”.
We recall a few standard notations, definitions and results that are used to prove the 

main result. For vector spaces X, Y , we denote by L(X, Y ) the set of all linear operators 
from X to Y . For an operator T ∈ L(X, Y ), N(T ) denotes the null space of T and R(T )
denotes the range of T . Thus N(T ) := {x ∈ X : T (x) = 0} and R(T ) := {T (x) : x ∈ X}.

As usual, L(X, X) will be denoted by L(X). A map P ∈ L(X) is called a projection if 
P 2 = P . Let P ∈ L(X) and Q ∈ L(Y ) be projections. The restriction of QTP to R(P )
can be viewed as a linear operator from R(P ) to R(Q). This is called a section of T by 
P and Q and will be denoted by TP,Q. It is called a finite section, if R(P ) and R(Q) are 
finite dimensional. When T is invertible, the section T−1

IY −Q,IX−P of T−1 is called the 
complementary section of TP,Q. With this terminology, our Null Space Theorem can be 
stated in the following very simple form:

There is a linear bijection between the null spaces of the complementary sections of 
T and T−1 (Theorem 2.1).

Its proof is also very simple. It is given in the next section. When X and Y are finite 
dimensional, T is represented by a matrix and complementary submatrices correspond to 
complementary sections (see [7]). Thus there is a linear bijection between the null spaces 
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of the complementary submatrices of T and T−1. Hence they have the same nullity. This 
is the Nullity Theorem (Theorem 1.1).

The authors of [7] have discussed several applications of the Nullity Theorem. For 
example, if T is an invertible tridiagonal matrix, then every submatrix of T−1 that 
lies on or above the main diagonal or on and below the main diagonal is of rank ≤ 1. 
However, proofs of these applications involve the famous Rank–Nullity Theorem (called 
the “Fundamental Theorem of Linear Algebra” in [6]) apart from the Nullity Theorem. 
Hence a straightforward imitation of these proofs to infinite dimensional case may or 
may not work, though the results may very well be true. Such an approach may work 
when the sections can be viewed as operators on finite dimensional spaces. In general, 
we need a different approach. This is attempted in the third section. We prove that if a 
tridiagonal operator on a Banach space with a Schauder basis is invertible, then certain 
sections of T−1 are of rank ≤ 1 (Theorem 3.1). This is followed by some illustrative 
examples and remarks about possible extensions.

2. Main result

Theorem 2.1 (The Null Space Theorem). Let X, Y be vector spaces, P ∈ L(X), Q ∈ L(Y )
be projections and T ∈ L(X, Y ) be invertible. Then there is a linear bijection between 
the null space of the section TP,Q of T and the null space of its complementary section 
T−1
IY −Q,IX−P of T−1.

Proof. Let x ∈ N(TP,Q). This means that x ∈ R(P ) so that P (x) = x and QTP (x) = 0. 
Hence QT (x) = 0, that is, (IY − Q)T (x) = T (x). Thus T (x) ∈ R(IY − Q). Also, 
(IX − P )T−1(IY − Q)T (x) = (IX − P )T−1T (x) = (IX − P )(x) = 0. Hence T (x) ∈
N((IX − P )T−1(IY − Q)) This means T (x) ∈ N(T−1

IY −Q,IX−P ). This shows that the 
restriction of T to N(TP,Q) maps N(TP,Q) into N((IX − P )T−1(IY − Q)). Since T is 
invertible, this map is already injective. It only remains to show that it is onto. For this 
let y ∈ N(T−1

IY −Q,IX−P ). This means y ∈ R(IY −Q) and (IX − P )T−1(IY −Q)(y) = 0. 
We shall show that T−1(y) ∈ N(TP,Q). Since y ∈ R(IY −Q), we have (IY −Q)(y) = y. 
Thus Q(y) = 0. Next, 0 = (IX −P )T−1(IY −Q)(y) = (IX −P )T−1(y). This implies that 
PT−1(y) = T−1(y), that is, T−1(y) ∈ R(P ). Also QTPT−1(y) = QTT−1(y) = Q(y) = 0. 
Thus T−1(y) ∈ N(QTP ). Hence T−1(y) ∈ N(TP,Q). �
Remark 2.2. As pointed out in the Introduction, this Null Space Theorem implies the 
Nullity Theorem (Theorem 1.1).

3. Ranks of submatirces

While considering infinite matrices, the products involve infinite sums, leading natu-
rally to the questions of convergence. Hence it is natural to consider these questions in 
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the setting of a Banach space X with a Schauder basis A = {a1, a2, . . .}. We refer to [4]
and [5] for elementary concepts in Functional Analysis.

Theorem 3.1. Let X be a Banach space with a Schauder basis A = {a1, a2, . . .}. Let T be 
a bounded (continuous) linear operator on X. Suppose the matrix of T with respect to A
is tridiagonal. If T is invertible, then every submatrix of the matrix of T−1 with respect 
to A that lies on or above the main diagonal (or on or below the main diagonal) is of 
rank ≤ 1.

Proof. Let M be the matrix of T with respect to A. Then M is infinite matrix of the 
form

M =

⎡
⎢⎢⎢⎢⎣

δ1 α1 0 0 .

β2 δ2 α2 0 .

0 β3 δ3 α3 .

0 0 . . .

. . . . .

⎤
⎥⎥⎥⎥⎦

Then the matrix of T−1 with respect to A is M−1. Let M−1 = [γi,j ]. Let Cj denote the 
j-th column of M−1 and Ri denote the i-th row of M−1. Thus

M−1 = [C1 C2 . . . ] =

⎡
⎢⎢⎢⎢⎣

R1
R2
.

.

.

⎤
⎥⎥⎥⎥⎦

Further for a fixed natural number k, let Ck
j denote the column vector obtained by 

deleting the first k − 1 entries from Cj . Thus

Ck
j =

⎡
⎢⎢⎢⎢⎣

γk,j
γk+1,j

.

.

.

⎤
⎥⎥⎥⎥⎦

Similarly, let Rk
i denote the row vector obtained by deleting first k−1 entries from Ri.

Next let Pk denote the submatrix of M−1 given by

Pk = [γi,j , i ≥ k, 1 ≤ j ≤ k] =
[
Ck

1 Ck
2 . . Ck

k

]
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Similarly, let Qk denote the submatrix of M−1 given by

Qk = [γi,j , 1 ≤ i ≤ k, j ≥ k] =

⎡
⎢⎢⎢⎢⎣

Rk
1

Rk
2
.

.

Rk
k

⎤
⎥⎥⎥⎥⎦

Note that every submatrix of M−1 that lies on or above the main diagonal is a 
submatrix of Qk for some k and every submatrix of M−1 that lies on or below the main 
diagonal is a submatrix of Pk for some k. Thus it is sufficient to show that Pk and Qk

are of rank ≤ 1 for each k.
We shall give two proofs of this assertion.
First proof:
The assertion is evident for k = 1.
Now consider the equation M−1M = I, that is,

[C1 C2 . . . ]

⎡
⎢⎢⎢⎢⎣

δ1 α1 0 0 .

β2 δ2 α2 0 .

0 β3 δ3 α3 .

0 0 . . .

. . . . .

⎤
⎥⎥⎥⎥⎦ = [ e1 e2 . . . ]

where, as usual, ej denotes the column matrix whose j-th entry is 1 and all other entries 
are 0.

Equating the first columns on both sides of the above equation, we get

δ1C1 + β2C2 = e1

This, in particular, implies that at least one of δ1, β2 is not zero.
Deleting the first entries from all the column vectors in the above equation, we get

δ1C
2
1 + β2C

2
2 = e2

1 = 0

This shows that {C2
1 , C

2
2} is a linearly dependent set, that is the matrix

P2 =
[
C2

1 C2
2
]

is of rank ≤ 1.
Next we equate the second column on both sides of the equation. Then

α1C1 + δ2C2 + β3C3 = e2

Hence one of α1, δ2, β3 is not zero.
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Now deleting the first two entries from all the vectors appearing in this equation, we 
get

α1C
3
1 + δ2C

3
2 + β3C

3
3 = e3

2 = 0

Since {C2
1 , C

2
2} is a linearly dependent set, one of the vectors, say C2

2 is a scalar 
multiple of the other, that is, C2

1 . This implies that C3
2 is a scalar multiple of C3

1 . Now 
the above equation shows that C3

3 is also a scalar multiple of C3
1 . Hence

P3 =
[
C3

1 C3
2 C3

3
]

is of rank ≤ 1.
Proceeding in this way (more precisely, by Mathematical Induction) we can show that
Pk is of rank ≤ 1 for each k.
Following essentially the same technique, equating the rows of both sides of the equa-

tion MM−1 = I, we can show that Qk is of rank ≤ 1 for each k.
This completes the first proof.
Second proof:
Recall that since A = {a1, a2, . . .} is a Schauder basis of X, every x ∈ X can be 

expressed uniquely as x =
∑∞

j=1 αjaj for some scalars αj . Let Xn denote the linear span 
of An := {a1, a2, . . . , an} and define a map πn : X → X by πn(x) =

∑n
j=1 αjaj . Then 

πn is a projection with R(πn) = Xn. Also note that for each k, Pk as defined above is 
the matrix of the section T−1

πk,I−πk−1
of the operator T−1. As noted earlier, this can be 

viewed as an operator on R(πk) = Xk. By the Null Space Theorem (Theorem 2.1), there 
is a linear bijection between the null space of this section and its complementary section, 
that is, the section Tπk−1,I−πk

of the operator T . This can be viewed as an operator on 
R(πk−1) = Xk−1. It can be seen (in many ways) that this is in fact the zero operator 
on Xk−1. (The matrix of this section is the submatrix of M obtained by choosing the 
first k− 1 columns and not choosing the first k rows. This is a zero matrix because M is 
tridiagonal.) Thus the null space of the section Tπk−1,I−πk

coincides with Xk−1. Hence 
the null space of the complementary section T−1

πk,I−πk−1
is also of dimension k − 1. This 

implies that its rank is 1 as it is an operator on Xk.
Thus Pk is of rank 1 for each k.
In a similar way, we can show that Qk is of rank 1 for each k.
This completes the second proof. �

Example 3.2. Let �2 denote the Hilbert space of square summable sequences and let 
E = {e1, e2, . . .} be the orthonormal basis, where as usual ej denotes the sequence 
whose j-th entry is 1 and all other entries are 0. Let R denote the Right Shift operator 
given by

R(x) =
(
0, x(1), x(2), . . .

)
, x ∈ �2.
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Consider a complex number c with |c| < 1 and let T = I − cR. Then the matrix of T
with respect to the orthonormal basis E is tridiagonal and is given by

⎡
⎢⎢⎢⎢⎣

1 0 0 . .

−c 1 0 0 .

0 −c 1 0 .

. . . . .

. . . . .

⎤
⎥⎥⎥⎥⎦

It can be easily checked that T is invertible and

T−1 =
∞∑
j=0

cjRj

Thus the matrix of T−1 with respect to the orthonormal basis E is given by

⎡
⎢⎢⎢⎢⎣

1 0 0 . .

c 1 0 0 .

c2 c 1 0 .

. . . . .

. . . . .

⎤
⎥⎥⎥⎥⎦

It is easily seen that every submatrix of the above matrix of T−1 that lies on or above 
(or on or below) the main diagonal is of rank 0 or 1.

Remark 3.3. In view of the above Theorem, T−1 or equivalently, M−1 = [γi,j ] can be 
described completely by using four sequences {an}, {bn}, {cn}, {dn} as follows: γi,j = aibj
for j ≥ i and γi,j = cidj for j ≤ i. Also, since for i = j, γi,i = aibi = cidi, these are 
essentially only three sequences. This should be expected as the tridiagonal operator T
(matrix M) is completely described by three sequences, namely, {αn}, {βn}, {δn}. This 
can be useful in devising fast methods of computing T−1. (See the Introduction of [7].)

Remark 3.4. It is also easy to see that the above proof can be easily modified in an 
obvious manner to a natural generalization that allows the matrix M of T to have a 
wider band. Suppose M = [mi,j ] is such that mi,j = 0 for |i − j| > p. (Thus p = 1
corresponds to tridiagonal operator.) Then using the same method, we can prove the 
following: every submatrix of the matrix of M−1 that lies above the pth subdiagonal or 
below the pth superdiagonal is of rank ≤ p.

A careful look at the proof of Theorem 3.1 in fact shows that we have actually proved 
a more general result.

Theorem 3.5. Let X be a Banach space with a Schauder basis A = {a1, a2, . . .}. Let T be 
a bounded (continuous) linear operator on X. Suppose the matrix of T with respect to A



S.H. Kulkarni / Linear Algebra and its Applications 472 (2015) 97–105 105
is tridiagonal. If T has a bounded left inverse S, then every submatrix of the matrix of 
S with respect to A that lies on or below the main diagonal is of rank ≤ 1. Similarly, if 
T has a bounded right inverse U , then every submatrix of the matrix of U with respect 
to A that lies on or above the main diagonal is of rank ≤ 1.

Remark 3.6. As a simple example of the above Theorem 3.5, we may again consider 
the right shift operator R on �2 discussed in Example 3.2. Let L denote the Left Shift 
operator given by

L(x) =
(
x(2), x(3), . . .

)
, x ∈ �2.

Then L is a left inverse of R. Clearly, every submatrix of the matrix of L with respect 
to A that lies on or below the main diagonal is of rank ≤ 1.

Remark 3.7. Since left (right) inverse is one among the family of generalized inverses, 
Theorem 3.5 also raises an obvious question: Is there an analogue of Theorem 3.5 for 
other generalized inverses, in particular for Moore–Penrose pseudo-inverse? Such results 
are known for matrices. (See [1]) Information on generalized inverses of various types 
can be found in [3]
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