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APPROXIMATION OF MOORE-PENROSE INVERSE
OF A CLOSED OPERATOR

BY A SEQUENCE OF FINITE RANK OUTER INVERSES

S. H. Kulkarni and G. Ramesh

Abstract

Let T be a densely defined closed linear operator between complex Hilbert
spaces H1 and H2 with domain D(T ) ⊆ H1 and separable range R(T ). In this
note we approximate the Moore- Penrose inverse T † of T by its finite rank
bounded outer inverses. We also illustrate this method with an example.

1 Introduction

Suppose T is a densely defined closed linear operator between Hilbert spaces H1

and H2 with domain D(T ) ⊆ H1 and has a separable range. Let T † denote the
Moore-Penrose inverse of T . In this note we prove the following result:

For each n ∈ N, there exists a bounded finite rank outer inverse T#
n of T such

that
T †y = lim

n→∞
T#

n y for all y ∈ D(T †).

Such methods were studied by Huang et al., [9] for the case of bounded operators
with separable range. Earlier these results were proved for the bounded operators
with closed and separable range by J. Ma and Z. Ma [15]. The proofs mentioned
in these two articles are not applicable when the operators under consideration
are unbounded. We overcome this difficulty by constructing new operators. The
important point here is to note that a large number of the operators which arise
naturally in applications e.g Mathematical Physics, Quantum Mechanics and Partial
differential Equations are all unbounded (See [18, 19] for more details). In fact, many
of these unbounded operators have compact inverse. To solve operator equations
involving such unbounded operators it is necessary to generalize the existing results
to the case of unbounded operators.
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The theory of generalized inverses has many applications in diverse mathemat-
ical fields like Optimization [8], Statistics, Economics, Games, Programming and
Networks, Science and Engineering [1].

In this note we have made an attempt to generalize the existing results to the case
of unbounded operators. A point worth noting is that while dealing with unbounded
operators one has to be more careful with the domains of the operators as those are
proper subspaces of the whole space. Hence, in most cases the techniques of the
bounded operators do not work. The same is true for the Moore-Penrose inverse
if the operator under consideration does not have closed range. This paper is a
sequel to an earlier paper [10], in which we have discussed projection methods for
the inverse of an unbounded operator.

The paper is organized in the following manner: In the second section we set
up notations and state some of the definitions and results which will be frequently
used throughout the remaining part of the paper. The third section contains the
main results and an example to illustrate these results.

2 Notations and Basic results

Throughout the paper we consider the complex Hilbert spaces which will be denoted
by H, H1,H2 etc . The inner product and the induced norm are denoted respectively
by 〈, 〉 and ||.||. If T : H1 → H2 is a linear operator with domain D(T ) ⊆ H1, then
it is denoted by T ∈ L(H1,H2). The null space and range space of T are denoted
by N(T ) and R(T ) respectively.

The graph of T ∈ L(H1, H2) is defined by G(T ) := {(x, Tx) : x ∈ D(T )} ⊆
H1×H2. If G(T ) is closed, then T is called a closed operator. The set of all closed
operators is denoted by C(H1,H2). By the closed graph Theorem [6, Page 281], an
everywhere defined closed operator is bounded. The set of all bounded operators
is denoted by B(H1,H2). If H1 = H2 = H, then B(H1,H2) and C(H1,H2) are
denoted by B(H) and C(H) respectively.

If S and T are two linear operators such that D(T ) ⊆ D(S) and Tx = Sx for
all x ∈ D(T ), then T is called a restriction of S and S is called an extension of
T . We denote this fact by T ⊆ S.

If M is a closed subspace of a Hilbert space H, then PM is the orthogonal
projection onto M and M⊥ is the orthogonal complement of M in H.

For closed subspaces M1 and M2 of H, the direct sum and the orthogonal direct
sum are denoted by M1 ⊕M2 and M1 ⊕⊥ M2 respectively.

Definition 2.1. [1, Definition 1.12, Page 13] Let T ∈ C(H1, H2). If there exists
an operator T# ∈ L(H2,H1) such that T#TT# = T#, then T# is called an outer
inverse of T (This is called {2} inverse in [4]).

Definition 2.2. [4] Let T ∈ L(H1,H2). If D(T ) = H1, then T is called densely
defined. The subspace C(T ) := D(T ) ∩N(T )⊥ is called the carrier of T .

Note 2.3. If T ∈ C(H1, H2), then D(T ) = N(T )⊕⊥ C(T ) [4, page 340].
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Definition 2.4. [Moore-Penrose Inverse] [4] Let T ∈ C(H1,H2) be densely defined.
Then there exists a unique densely defined operator T † ∈ C(H2,H1) with domain
D(T †) = R(T )⊕⊥ R(T )⊥ and has the following properties;

1. TT †y = P
R(T )

y, for all y ∈ D(T †).

2. T †Tx = PN(T )⊥ x, for all x ∈ D(T ).

3. N(T †) = R(T )⊥.

This operator T † is called the Moore-Penrose inverse of T .
The following property of T † is also well known. For every y ∈ D(T †), let

L(y) := {x ∈ D(T ) : ||Tx− y|| ≤ ||Tu− y|| ∀ u ∈ D(T )}.

Here any u ∈ L(y) is called a least square solution of the operator equation
Tx = y. The vector x = T †y ∈ L(y) and satisfies , ||T †y|| ≤ ||x|| ∀ x ∈ L(y) and is
called the least square solution of minimal norm. A different treatment of T †

is described in [4, Pages 336, 339, 341], where the authors call it “the Maximal
Tseng generalized Inverse”.

Theorem 2.5. [3, 5] Let {Hk}, k = 1, 2, 3, . . . be closed subspaces of H and let
Pk = PHk

. Suppose {Pk} is a monotone(Hk ⊆ HK+1 or Hk+1 ⊆ Hk) sequence
of orthogonal projections. Then the strong limit P = lim

k→∞
PHk

exists and P is

the projection onto ∩kHk in case Pk is non-increasing and onto ∪kHk if {Pk} is
non-decreasing.

Proposition 2.6. [4] Let T ∈ C(H1,H2) be a densely defined operator. Then

1. N(T ) = R(T ∗)⊥

2. N(T ∗) = R(T )⊥

3. N(T ∗T ) = N(T ) and

4. R(T ∗T ) = R(T ∗).

Proposition 2.7. [7, 17] Let T ∈ C(H1,H2) be densely defined. Then

1. (I + T ∗T )−1 ∈ B(H1), (I + TT ∗)−1 ∈ B(H2).

2. (I + TT ∗)−1T ⊆ T (I + T ∗T )−1 and ||T (I + T ∗T )−1|| ≤ 1

3. (I + T ∗T )−1T ∗ ⊆ T ∗(I + TT ∗)−1 and ||T ∗(I + TT ∗)−1|| ≤ 1.
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3 Main Results

In this section, first we prove a lemma which is helpful in proving the main theorem.

Lemma 3.1. Let T ∈ C(H1,H2) be densely defined. Let Yn ⊆ R(T ) be such that

(a) Yn ⊆ Yn+1 for each n ∈ N
(b) dim Yn = n

(c) ∪∞n=1Yn = R(T ).

Let Zn := (I + TT ∗)−1Yn and Xn := T ∗Zn = T ∗(I + TT ∗)−1Yn. Then

1. X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ Xn+1 ⊆ · · · ⊆ R(T ∗) = N(T )⊥, dim Xn = n and

2. ∪∞n=1Zn = R(T )

3. ∪∞n=1Xn = R(T ∗)

4. ∪∞n=1TXn = R(T ).

Proof. By the definition of Xn, Xn ⊆ C(T ) ⊆ N(T )⊥ = R(T ∗) for all n and Xn ⊆
Xn+1. Since the operator T ∗(I + TT ∗)−1|

R(T )
is injective dim Xn = n = dim Yn.

For a proof of (2), we make use of the following observation:

(I + TT ∗)−1(R(T )) = R(T ).

It can be proved easily that (I + TT ∗)−1(N(TT ∗)) = N(TT ∗). By the Pro-
jection Theorem [13, 21.1, Page 420 ], H2 = N(TT ∗) ⊕⊥ N(TT ∗)⊥. That is
H2 = N(TT ∗)⊕⊥ R(TT ∗). But

(I + TT ∗)−1(H2) = D(TT ∗) = N(TT ∗)⊕⊥ C(TT ∗).

Hence

(I + TT ∗)−1H2 = (I + TT ∗)−1(N(TT ∗)⊕⊥ R(TT ∗))

= N(TT ∗)⊕⊥ (I + TT ∗)−1(R(TT ∗)).

From this we can conclude that (I +TT ∗)−1(R(TT ∗)) = C(TT ∗) and as C(TT ∗) =
N(TT ∗)⊥, we have (I + TT ∗)−1(R(TT ∗)) = R(TT ∗). Hence (I + TT ∗)−1(R(T )) =
R(T ), by Proposition (2.6). Thus

R(T ) = (I + TT ∗)−1(R(T )) = (I + TT ∗)−1(∪∞n=1Yn)

= ∪∞n=1(I + TT ∗)−1Yn

= ∪∞n=1Zn.
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This proves (2).
It is clear that ∪∞n=1Xn ⊆ R(T ∗) = N(T )⊥.
Suppose ∪∞n=1Xn ( N(T )⊥. Then there exists a 0 6= z0 ∈ N(T )⊥ such that

z0 ∈ (∪∞n=1Xn)⊥. That is

〈z0, T
∗(I + TT ∗)−1y〉 = 0 for all y ∈ R(T )

By the continuity of T ∗(I + TT ∗)−1, this holds for all y ∈ R(T ).
We claim that this holds for all y ∈ H2. Let y ∈ H2. Then y = u + v for

some u ∈ R(T ) and v ∈ R(T )⊥ = N(T ∗) ⊆ D(T ∗). Hence by Proposition 2.7,
T ∗(I + TT ∗)−1v = (I + T ∗T )−1T ∗v = 0. Hence

〈z0, T
∗(I + TT ∗)−1y〉 = 〈z0, T

∗(I + TT ∗)−1u〉 = 0.

This proves the claim.
Next, since C(T ) = N(T )⊥[12], there exists a sequence {zn} ⊆ C(T ) such that

zn → z0. Hence for all y ∈ H2,

0 = 〈z0, T
∗(I + TT ∗)−1y〉 = lim

n→∞
〈zn, T ∗(I + TT ∗)−1y〉

= lim
n→∞

〈Tzn, (I + TT ∗)−1y〉
= lim

n→∞
〈(I + TT ∗)−1Tzn, y〉

= lim
n→∞

〈T (I + T ∗T )−1zn, y〉.

This shows that T (I+T ∗T )−1zn
w−→ 0 (weakly), but since T (I+T ∗T )−1 is bounded,

we have T (I+T ∗T )−1z0 = 0. That is (I+T ∗T )−1z0 ∈ N(T ). Let y = (I+T ∗T )−1z0.
Then Ty = 0. Hence z0 = (I+T ∗T )y = y ∈ N(T ). Thus z0 ∈ N(T )∩N(T )⊥ = {0}.
Hence z0 = 0, a contradiction to our assumption. This proves (3).

Using a similar argument we can prove (4).

Remark 3.2. We may note that Lemma 3.1 implies that if R(T ) is separable, then
R(T ∗) is separable. This generalizes an analogous result for bounded operators
proved in [2, Page 362].

Theorem 3.3 (Compare Theorem 2.1 of [9]). Let T ∈ C(H1, H2) be a densely
defined operator with separable range R(T ). Then for each n ∈ N, there exists a
bounded outer inverse T#

n of T of rank n such that

T †y = lim
n→∞

T#
n y for all y ∈ D(T †).

Proof. Assume that R(T ) is infinite dimensional. Since R(T ) is separable, we can
find a sequence of subspaces of Yn of R(T ) with the following properties:

1. Yn ⊆ Yn+1 and dimYn = n for all n ∈ N.

2. ∪∞n=1Yn = R(T ).
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(
For example if {φ1, φ2, . . . ,} is an orthonormal set that spans R(T ), then define

Yn := span({φ1, φ2, . . . , φn})
)
.

Let Zn and Xn be as in Lemma 3.1. Then Zn ⊆ Zn+1 and dim Zn = n. Similar
results hold for Xn.

Let Pn : H2 → H2 and Qn : H1 → H1 be sequences of orthogonal projections
with R(Pn) = Zn and R(Qn) = Xn. Let Tn := PnT . Here D(Tn) = D(T ) and
Tnx → Tx for all x ∈ D(T ).

Next we claim that R(Tn) = R(Pn) = Zn. It is clear that R(Tn) ⊆ R(Pn) = Zn.
To show the other way inclusion, it is enough to show N(T ∗n) ⊆ N(Pn). Now let z ∈
N(T ∗n). Then T ∗Pnz = 0. Hence Pnz ∈ N(T ∗) = R(T )⊥. But, Pnz ∈ R(T ). Hence
Pnz = 0. Thus z ∈ N(Pn). Note that T ∗n = T ∗Pn = T ∗|R(Pn) = T ∗|Zn

. Hence
R(T ∗n) = T ∗Zn = Xn = N(Tn)⊥. That is N(Tn) = X⊥

n . R(Tn)⊥ = N(Tn∗) = Z⊥n .
That is R(Tn) = Zn. So Tn|Xn : Xn → Zn is a bijective operator. Hence dim Xn =
dim Zn = n.

Construction of outer inverses: Define T#
n : H2 → H1 by

T#
n y :=

{
(Tn|Xn)−1y, if y ∈ Zn,

0, if y ∈ Z⊥n .

Here T#
n = T †n and T#

n is bounded since R(Tn) is closed. It is also true that T#
n is

an outer inverse of Tn. Here N(T#
n ) = Z⊥n and R(T#

n ) = Xn.

Next we claim that T#
n is also an outer inverse of T . For this we make use of

the following observation: T#
n y = TnPny, for all y ∈ H2. To see this let y ∈ H2.

Then y = u + v for some u ∈ Zn and v ∈ Z⊥n .

Hence

T#
n y = T#

n (u + v) = T#
n u (∵ T#

n (v) = 0, because v ∈ Z⊥n )

= T#
n Pny.

Since T#
n is an outer inverse of Tn,

T#
n TT#

n y = T#
n PnTT#

n y = T#
n TnT#

n y

= T#
n y.

Our next aim is to show that lim
n→∞

T#
n y exists and equals T †y for all y ∈ D(T †). Let

y ∈ D(T †). Then T †y ∈ C(T ). Since Qnx → x for all x ∈ C(T ) ⊆ N(T )⊥ = R(T ∗),
it is clear that QnT †y → T †y. Next we show that QnT †y = T#

n y, for all y ∈ D(T †).
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From the facts QnT †y ∈ Xn, (Qn − I)T †y ∈ N(Tn) and Theorem 2.5,

QnT †y = T#
n TnQnT †y = T#

n TnQnT †y + T#
n Pny − T#Pny

= T#
n (TnQnT †y − Pny) + T#Pny

= T#
n (TnQnT †y − PnTT †y) + T#

n Pny

= T#
n (TnQn − PnT )T †y + T#

n Pny

= T#
n Tn(Qn − I)T †y + T#

n Pny

= T#
n Pny

= T#
n y.

As QnT †y → T †y for all y ∈ D(T †), and by the above argument lim
n→∞

T#
n y exists

and equals T †y.

Theorem 3.4 (Compare Corollary 2.1 of [9]). Let T ∈ C(H1, H2) be a densely
defined operator. Then the following statements are equivalent:

1. R(T ) is closed.

2. T † is bounded.

3. D(T †) = H2.

4. 0 is not an accumulation point of σ(T ∗T ).
If, in addition R(T ) is separable and T#

n are as in Theorem 3.3, then each of
the above statements is also equivalent to each of the following;

5. lim
n→∞

T#
n y exists for all y ∈ H2.

6. T#
n is uniformly bounded.

Proof. The equivalence of (1), (2) and (3) is well known and can be found in ([4]).
The equivalence of (1) and (4) is proved in ([14, Theorem 3.3]).
The equivalence of (3) and (5) follows from Theorem 3.3.
The implication (5) ⇒ (6) follows from the Uniform boundedness principle.
(6) ⇒ (5):

By Theorem 3.3, lim
n→∞

T#
n y exists for every y ∈ D(T †). Since D(T †) = H2 [4,

Theorem 2 , Page 320], the conclusion follows by [16, Theorem 6.4, Page 220].

Remark 3.5. The authors in [9] proved that if T ∈ B(H1,H2) with a separable
range, then for each n ∈ N, there exists a bounded outer inverse T#

n of T of rank n
such that

D(T †) = {y ∈ H2 : lim
n→∞

T#
n y exists}

and

T †y = lim
n→∞

T#
n y for all y ∈ D(T †).
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Using similar arguments as in Theorem 3.3, we can prove the following result.

Theorem 3.6. Let T ∈ C(H1, H2) be a densely defined closed operator. If there
exists a sequence of increasing orthogonal projections Pn on H2 onto subspace of
R(T ) with the property that Pny → P

R(T )
y for all y ∈ H2 and R(PnT ) is closed,

then for each n, there exists an outer inverse T#
n such that

T †y = lim
n→∞

T#
n y for all y ∈ D(T †).

Example 3.7. Let T : `2 → `2 be with

D(T ) := {(x1, x2, . . . ) ∈ `2 : (0, 2x2, 0, 4x4, . . . ) ∈ `2}.

Define

T (x1, x2, . . . ) = (0, 2x2, 0, 4x4, . . . ) for all (x1, x2, . . . ) ∈ D(T ).

It can be shown that T = T ∗ and R(T ) is closed. Let {en}∞n=1 be the stan-
dard orthogonal basis for `2. Here R(T ) = span(e2, e4, . . . , e2n, . . . ). Let Yn :=
span{e2, e4, . . . , e2n}. Then Yn ⊆ Yn+1, dim(Yn) = n and ∪∞n=1Yn = R(T ). Since
T = T ∗, we have I + TT ∗ = I + T 2.

For any x = (x1, x2, . . . ) ∈ D(T 2),

(I + T 2)x = (x1, 5x2, x3, 17x4, . . . , x2n−1, (1 + 4n2)x2n, . . . ).

For any y = (y1, y2, . . . ) ∈ `2,

(I + T 2)−1y = (y1,
y2

5
, y3,

4
17

y4, . . . , y2n−1,
y2n

1 + 4n2
, . . . ), y = (y1, y2, . . . , ) ∈ `2.

In particular, (I + T 2)−1(e2n) =
e2n

1 + 4n2
. Hence Zn = (I + T 2)−1Yn = Yn. Also

Xn = T ∗Zn = Yn. Then Xn = Yn = Zn. Hence Pn = Qn. That is Pnx =
x2e2 + x4e4 + · · ·+ x2ne2n for all x = (x1, x2, . . . , xn, . . . , ) ∈ `2. Tn = PnT . There
fore Tnx = 2x2e2 + 4x4e4 + · · ·+ 2nx2ne2n. Hence

T#
n (y) =

{y2

2
e2 +

y4

4
e4 + . . .

y2n

2n
e2n if y ∈ Yn

0 if y ∈ Y ⊥
n .

Hence by Theorem 3.3, D(T †) = {y ∈ `2 : limn→∞ T#
n exists} = `2 and

T †y = lim
n→∞

T#
n = lim

n→∞
(
(0,

1
2
y2, 0,

1
4
y4)

)
for all y = (y1, y2, . . . ) ∈ `2.

Concluding remarks: For an arbitrary densely defined closed operator T ,
computing Zn, Xn may be difficult. A procedure to compute (I + TT ∗)−1 is in-
dicated in [7]. We hope to apply this procedure to some concrete densely defined
closed operators in future.
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