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Abstract

The paper deals with sampling and reconstruction of vector valued functions in a
shift invariant space with multiple generators. Unlike the case of a shift invariant
space with multiple generators in L?>(R), when the dimension of the vectors is the
same as the number of generators, Z turns out to be a stable set of sampling. A
sampling formula for reconstructing a function from its samples at integer points is
derived and the problem of sampling on a perturbed set of integers is discussed. An
illustration of sampling and reconstruction of a function in L*(R, [Rz) on a finite
interval is given using Matlab.

Keywords Block Laurent operator - Reproducing kernel Hilbert space - Stable set
of sampling - Vector valued Zak transform

Mathematics Subject Classification 42C15 - 94A20

1 Introduction

The theoretical aspects of non uniform sampling began to develop significantly from
the mid twentieth century. Yet it is known to have its roots in the 1841 work of
Cauchy (see [18]). Generally speaking, the sampling problem refers to finding out a
function f : R — C, from a countable number of samples of f given by, say, f(x) :
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k € 1| where [ is a countable index set. Stated in this manner, the problem is ill-
posed, since there can be uncountable number of functions passing through a given
countable set of points. Hence sampling problems have been studied in convenient
spaces of functions, namely, shift invariant spaces.

The classical Shannon sampling theorem characterizes sampling and reconstruc-
tion in the shift invariant space of bandlimited functions generated by the sinc
function. The sinc function has the property that its Fourier transform is compactly

292

has support [—3,3]. If f € L*(R) N B 11y and f(k) are its samples taken at the integer

supported. Let B_y y denote the collection of functions f whose Fourier transform ]A”

212 13
points k € Z, then the Shannon sampling theorem states that f can be reconstructed

by the formula

flx) = Zf(k)sinc(x — k).

kez

Paley and Weiner [22] extended this result to non-uniform samples instead of
integers. They proved that if X = {x; : k € Z} is such that [x; — k| < %, then any
band limited function can be reconstructed from the samples {f(x;) : k € Z}. Duffin
and Eachus [8] improved this gap between x; and k to 0.22. Later, Kadec in [14]
proved that the maximum gap between x; and k has to be less than }T'

For a more general sampling set, the sampling condition for band limited
functions is given in terms of the Beurling density D(X) defined as follows:

#XU (v + [0, )]

D(X) = lim inf .
r—oo yeR r

272

samples {f(x;) : k € X} stably and uniquely. Conversely, if every f € L*(R) N
B[_%y%] can be uniquely and stably reconstructed from its samples, then D(X) > 1 (see

In fact, if D(X) > 1, then any f € L*(R) N B_1y can be reconstructed from its

[16]). For a comprehensive survey of sampling theory we refer to the classical work
of Butzer and Stens in [7]. It traces the theory of sampling from the work of de la
Vaullee Poussin in 1908 (see [18]).

Non uniform sampling in shift invariant spaces gained further attention following
the invention of orthogonal wavelet bases and multiresolution analysis by Meyer
[20] and Mallat [19]. The problem of sampling and reconstruction is extensively
studied in shift invariant spaces with single generators. See, for example,
[2, 11, 17, 26].

However, the problem of stable set of sampling was not studied much in the case
of a shift invariant space with multiple generators until recently. In [24], the authors
address the problem of obtaining conditions under which Z can be a stable set of
sampling for a shift invariant space with multiple generators. Surprisingly, it turns
out that Z can never become a stable set of sampling when the number of generators
is > 2. In [23], the authors discuss the problem of obtaining conditions under which
Z/m,m € N and rZ,r € Q" become stable set of sampling. But, there are several
interesting results concerning sampling and reconstruction in a shift invariant space
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with multiple generators obtained by several authors. Some problems in this
direction are average sampling [5, 27, 30, 31] dynamic sampling [32], random
sampling [10], stable reconstruction models with respect to different kinds of small
perturbations [1, 17], robustness of the sampling procedure [3], sampling and
reconstruction in reproducing kernel subspaces of L”(Rd) [4, 21, 33], multiwavelet
spaces [29], local reconstruction procedures [13, 25, 28] and so on.

The problem of interest in the present paper is to study the stable set of sampling
and reconstruction of vector valued functions in a shift invariant space with multiple
generators. Following an intuitive lead to the invertibility of block Laurent
operators, we investigate the stable sets of sampling for V(F) , the shift invariant
space of vector valued functions generated by integer translates of elements of F,
where F = {¢,..., ¢}, P; € L2(R,C"),i=1,...,m. Unlike the case of shift
invariant spaces with multiple generators in L?*(R), it turns out that when the
dimension of the vectors is the same as the number of generators, Z becomes a
stable set of sampling. Firstly, we derive the condition for the set of translates
{twp;,n € Z,i =1,...,m} to be a Riesz basis for V(F). A Zak transform for the
vector valued functions is defined and it is used to obtain an equivalent condition for
a stable set of sampling for V(F). In fact, a set of equivalent conditions for a
countable indexed set X to be a stable set of sampling for V(F) is derived.

As in [23, 26], a sampling formula for reconstructing a function f € V(F) from
its samples at integer points is derived. Finally, the problem of sampling on a
perturbed set of integers is also discussed. An illustration is given using Matlab for
sampling and reconstruction of a function in L>(R, R*) on a finite interval.

2 Definitions and background

In this section, we shall provide the necessary definitions and background for the
remaining sections of the paper.

Definition 2.1 Let L?>(R,C") denote the space of vector valued square integrable
functions f : R — C™. The inner product on this space is given by

= [0 e eds = [ 2 -fodr= [ > alilhwas

Definition 2.2 A closed subspace M of L*(R,C™) is called a shift invariant space if
T,¢ € M for all n € Z and for all ¢ € M . Here 1, is the translation operator defined

by tad(x) = p(x —n).

We shall work with the following shift invariant space, with m generators in
L*(R,C™). Let F = {¢y,...... ,$,,+ C L*(R,C™). Define

V(F) = span{t,dy,.....,tnd,;n € Z}.
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A. John et al.

Definition 2.3 Let 0 # H denote a separable Hilbert space. A sequence of vectors
{fu,n € Z} in H is called a frame if there exist constants 0 <A < B <oo such that

AFIP < ST ILP <BIFIP, (1)

neZ

for all f € H. The numbers A,B are called the frame bounds.

Definition 2.4 ([6]) Let H;,...,Hy be separable Hilbert spaces. Let
F,cHy,i=1,...,L. Let m; : | — F;,i =1,...,L be indexing maps where [ is a
countable index set. Let F C H; + ...+ H;. Then,

F=F+...+F,
:{fil+"'+fiLv el}, fk—TEk()E[Fk

Then the set {7y (i),...,n.(i) : i € 1} is called a super frame, if there exist constants
0<A <B<oo such that for each hy € Hy, 1 <k <L,

AP - [ |P) Z(Zlhk,f )SB(||hl||2+"'+|hL||2)' 2)

nel

Definition 2.5 A sequence of vectors {f,,n € Z} in a separable Hilbert space H is
called a Riesz basis, if span{f,} = H, and there exist constants 0 <c < C < oo such

that
e ldal I datilP<CY

neZ nezZ nez

for all (d,) € 2(Z).

Definition 2.6 For F = {¢,,...,¢,} C [*(R,C"), let ?ﬁ; denote the Fourier

transform of ¢;. Then the Gramian matrix Gr(;) = [Gy, ¢,(¢)] is defined as follows.
Gy, (&) = Z<¢i(§ +n), i (E+ n)>; ij=1,...m ¢cR.
neZ

In particular, when {¢,,...,¢,} C L*(R), it has been proved in [9] that
{twp;,n € Z,i € {1,....,m}} is a Riesz basis for V(F) iff there exist & > 0, > 0
such that

ol X Gpe) 2Pl aeleR. (3)
We shall prove a similar theorem for functions in L?(R, C™) in the next section.

Definition 2.7 A vector valued reproducing kernel Hilbert space, denoted by
RKHS, is a Hilbert space H of functions f : R — C™, if there exist a function
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Shift invariant spaces in L>(R, C™) with m generators

K : R x R — C™", such that for every ¢ € C" and x € R, K(x,x")c belongs to H.
If we denote K,(y) = K(y,x) for a given x and Vy € R, we have

<Kxc>f> = <c,f(x)>,

where the LHS is an inner product in H. The function K is called the reproducing
kernel of H and K(x,x’) is a positive semi definite matrix for each x, x'.

Definition 2.8 A bounded linear operator L : (Z)" — I*(Z)" is a block Laurent
operator iff its matrix has the form

Ay A1 Ao
Ay Ay A 4)
Ay A1 A '

Here 2(Z)™ is a direct sum of m copies of [*(Z). Therefore, an operator L on />(Z)"
can also be represented as an m X m matrix whose entries are operators acting on
(7). Thus,
L17] e L] m
L=1 1 HA2)" — P@2)". (5)
Lot - Lom

) y

It can be shown that L is a Laurent operator on /*(Z)™ iff all the entries L, in the
matrix representation (5) are Laurent operators on /?(Z). Also we have
Ly = [A(s ]OO

i—jlij=—00"

where A}’ is the (r, s)-th entry of the matrix A, with respect to the standard basis of
C™. Thus we have,

Ly(...,0,0,t0,0,...) = (a™),_, € 2(2).
If z € S', where S! = {z € C,|z| = 1}, put
Yii(z) ... Yin(2
Y(z) = : : : ; (6)
WYui(z) ... Wum(2)

where,
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@)= 7y
Y is called the defining function or symbol of the Laurent operator L.

Theorem 2.9 [12] Let L be the block Laurent operator with symbol ®. Then L is
invertible iff there exists y > 0 such that

|det®(z)| >y a.e.z€S' (7)

and in this case L™! is the Laurent operator defined by CD(.)fl.

3 The main results

Theorem 3.1 Let F={¢,...... bt CL2(R,C").Then {1,¢;, ne€Z,ic
{1,....,m}} is a Riesz Basis for V(F) iff there exist o. > 0, § > 0 such that
o X Gpey 2Pl ae. E€R (8)
where,
Gy, (€)oo Gy, (S)
Gre) = : : : : )
G (&) o Gy,4,(9)

Proof Suppose {t,¢;, ne€ Z,i€{l,....m}} is a Riesz basis for V(F). Then
there exist constants 0 <c¢ < C < oo such that,

m

e Nl <112 ditm)ywgil? < C Y lldall,

nez neZ I=1 nez
for all (d) = (di,...,dn) € P(Z)".
Now
I Z Zdl(”)’in¢1||2 = <Z Zdl(")fn@’ Z de(r)fr¢k>
nezZ I=1 neZ = reZ k

fZZZZ & (Ndi(n) gt — 1) - dy(t — m)di

neZ reZ I=1 k=1 Y-

di(r / e(t) - ¢yt — (n—r))dt

S

Ms

22
>

i
o
it

dy(r 1(S+V)[ i(t) - ¢yt — s)dt

N
—
Il

=
x~
Il

-

SEZ re
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by applying change of variables. Taking Fourier transform, we get

H ZHEZ ;n:l d[(n)fn¢l||2
-Sniia s+ [ T Bloreao

se€Z reZ I=1 k=

= / Zdzs—i—r —Jelstr) de r)e ]U)r¢k ) (}b,(a))da)
1 =1

X se7 reZ

where,

and

: : : ’ (10)
(31 9u(@) o (Bu(@), dule))

which implies that o/ < Gg) = Bl a.e. ¢ € R. By retracing the steps, we arrive at
the converse part. [J

Now  we shall show that V(F) is a RKHS. We have
F={¢y,...... ¢} C L*(R,C™). We shall denote ¢; = (¢ ,....,P;,), Vi€
{1,...,m} where each ¢;; € L*(R);i,j € {1,...,m}.

Theorem 3.2  The shift invariant space V(F) is a reproducing kernel Hilbert space.

Proof Define K : R x R — C"™" by

Donez Zlmzl<7n¢;1.1(y): Tn¢1,1(x)> 0o ... 0
K(x,y) = : : :
0 e 0 S (i), T ()

using the dual basis {rnd;,-, neZ,ic{l,...,m}}. Then for c € C",

G 3D DT ORT MO RN 3 g CF IMORRIMEING

neZ I=1 neZ I=1

where,
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C1

Cm

Let f = (fi,...,fm). Now,

(K(\2)e.f)
< Cl%;<7n¢ll Tn<f>1,1(x)>a---,
cmz;lf@c/),m rncp,,m(x))f,<fl,-.-,fm>T>
) BARIBICEIOHY
- < Z > <rnq3,<.>,f>rn¢l<x>>
neZ I=1
= <C7Zz :1 <f, e >rn¢,(x)>
= (e, ().

O

Definition 3.3 The vector valued Wiener Amalgam space, denoted by
W(C,¢',C™), is defined by

W(C,¢',C") = {f € C(R,C") : Jmax |If (x + )l <o}
nez

If {¢y,...... b} C W(C, ¢!, C™), then each function in V(F) is continuous. Fur-
ther it can be shown that W(C, ¢!, C™) is a Banach Space with the above norm.

Definition 3.4 A set X = {x, : n € Z} is called a stable set of sampling for V(F), if
there exist 7, R > 0 such that

IS e < 0 UF00) IBe SRIS Brgeny ¥ € V). (1)

nez

Proposition 3.1 X = {x, : n € Z} is a stable set of sampling for V(F) iff it is a
stable set of sampling for V(¢,),...,V(¢,,)-

Proof Let X be a stable set of sampling for V(¢;),i = 1,...,m. Then, there exist
ri, R; > 0 such that
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rllf men < D I1AGR) len <R Zmen i € V(g Yi=1,....m.

neZ
(12)
Let r = _7nl1in (r;) and R = max (R;). Let f € V(F). Then,
F=2.2 ak9
kez =1

for some ¢; € I*(Z). Here each f; = Y, ., c;j(k)p;(x —k) e V($), Vj=1,...m
Then it follows from (12) that,

m

Yo rlfi lzgen <er\|fz %) [l <ZRIIﬁIIsz vi=1,.

i=1 i=1 nez
which in turn implies that

If e < D07 I f(x)

neZ

& SRS 1 mer -

Conversely, suppose X is a stable set of sampling for V(F). Then, there exist
r,R > 0 such that

P e < Y0 1£0a) 10 SRS pgen, ¥ € V(F).

neZ

Let f; € V(¢;). Then,

fi= Zc(n)rnd)i where ¢ € 62(2).

neZ

From the above equation, we get f; € V(F). Therefore,

1 @en < Z 1 /i) En <R i I2qmems

nez

which shows that X is a stable set of sampling for V(¢;) for i=1,...,m. O

Definition 3.5 Let f € L?(R,C™). Then, the vector valued Zak transform Z :
L*(R,C™) — L*(R x T,C™) where T = [—1, 1], is the function on R* defined by

(Zf)(x,y) Zez’”"}‘cnf (13)

nez

As in the classical case, vector valued Zak transform satisfies the following
properties.

i Zf(xvy) = eZnixny'(_y7x) X,y € R.
o Zf(k,y) = ™0Zf(0,y) k€L
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Now, for each F € L*(T,C"), we define

Z i F, e e\, (x +n),

neZ I=1

where (ey, ..., ey,) is the standard orthonormal basis for C".
Clearly TF € V(F). The operator T is bounded above and below. In fact,

ITFIP =11 Y (F e eyd(- +n)lP.

neZ I=1

Since {t,¢;;1=1,...,n} is a Riesz Basis for V(F), we have,
nm min- 2
e L IF el <ITFIF < X IGF el

which implies that
2 2 2
c|IFIF<NTFIF < ClIFI7,

since {e*™"¢;;1=1,...,m;n € Z} forms an orthonormal basis for L*(T,C™).

Moreover, for each f € V(F), there exists a unique (c,) € ¢>(Z)" such that
f=>nez 2oimici(n)¢;(- +n). Again, by Riesz-Fischer theorem, there exist a
unique F € L*(T,C"), such that (F,e*™"¢;) = ¢;(n). For this F we have TF = f.
Hence T is onto. Thus, T is a bounded invertible operator from LZ(TT7 C™) onto V(F).
Further,

TF(x)
= Z Z (F, ezm"'el>([>,(x +n)
neZ =1
=>.> / ¢ ¥ F(y)dydby (x + n)
nez 1=1 7T
= [ R0 e gk niay
T =1 nez
= i Fi1(¥)Z¢y(x,y)dy
=177
=3 [ F) @6 3)s - Zdl )
=1 7T
= (Em:/fz Zyy (x,y)dy, . .. Z/}'z Z¢zmxy)dy>
= <<-7:7 (Zd)Ll (x7 ')7 .. ‘7Z¢m,l(x7 ))>7 sy <-7:7 (Zd)lﬁrn(x? ')> . '>Z¢m.m(x7 ))>>
= (720 1), (FZ0,0))
Now, let f € L*(R,C") be written as f = (fi, . . .,f,,). Consider
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D )i — k) =f(x), ¢ € £(2), (14)

keZ j=1
which we will write as a matrix equation. Define U : ¢*(Z)" — ¢*(Z)" by

Ul,l Um11

Upm - Unnm

where each U;; is an infinite matrix given by

Uij(k,s) = ¢iJ(xk —5). (16)
Let
c= (17)

be an element of /2(Z)", where each ¢; € I*(Z). Then (14) can be written as

Uec = (f(x;), i€Z, (18)
where
fi
f=1: (19)
Jin

belongs to L2(R, C™).
Now we shall prove the equivalent statements for a stable set of sampling for
V(F), as in [2, 26] for a shift invariant space in L?(R) with a single generator.

Theorem 3.6 Let F={d,...... , b, } CL*(R,C") and F C W(C,£',C") such
that {t¢; k € Z,i=1,...,m} is a Riesz basis for V(F) . Then the following
statements are equivalent:

(1) The set X = {x; : j € Z} is a stable set of sampling for V(F).
(2) There exists A, B > 0 such that

Alle By < U By <Bllclep, YeeP@)

(3) The set {Kye;:j€ Z,1=1,...,m} is a super frame for V(F), where {K, :
x € R} is a reproducing kernel for V(F).
(4) The set {Z ,(x;,.),..-,Z¢ ,(x;,.) : j € Z} is a super frame for L*(T,C").
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Proof 1=-2.LetX = {x; :j € Z} be a stable set of sampling for V(F). Then, there
exist » > 0, R > 0 such that

P Iwen < D0 176 120 <R IS Igen -

neZ

Let f = 0 S ()t Then,

17 1P = |<Zic,»< msl,zzc, rk¢>

neZ i=1 kel j=

1S ey ¢ K)ndy)|

nkez ij=1
<> ZIC: M zadillle; ()b
nkeZ ij=
= max | ¢; HZZZIC IZZICJ
nez i= keZ j=
<Bllcl|?.

Also,

Lf 112 = min | & |12 ZZM

nel j=

Further, we have from (18) that, || Uc ||3,n= 3",c7 If (xa) |
Therefore,

Al clpgy < 1 Uclpgy <Bllcllagy, Yeel(@)",

where A = r~mlin I ¢; >, B :R~m?x I ¢; [
2 = 3. From (11),
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m

S kel =303 ).

nel j=l1 nel j=1

—ZZM

nel j=

=> IrGa) IP

nel
= e |?

<B|clP

1
<B- 2,
<B (Fal

Similarly,

1 m
AP P <D Kf Kyen)l
nel j=1

Notice here that, with H; = L*(R,C"),l=1,...,m and 7; : Z — L*(R,C™) given
by m(j) = Kye, 1 =1,...,m, we have {m(j),l=1,...,m} is a super frame for

V(F).
3 <= 4. We have,

S 120 = 305 1 Kyer)

nez nel j=1

*ZZ| F.Zo (x,- >|7

nel j=

where TF = f and T being a bounded invertible operator satisfies

1 m
1T IFIP <Y KF 2l NP I T IR F IR,

nel j=1

showing that 3 and 4 are equivalent.

4 Regular sampling in V(F)

Consider the case when X = Z. Then the matrix U in (15) becomes
U[J(k, S) = qﬁw(k - S).
In this case, U : *(Z)" — (*(Z)" is a block Laurent operator by its structure.

Then by (5), each of U;; : £2(Z) — ¢*(Z) are Laurent operators.
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For F = {¢,,...... , @}, define @ by
Q1(z) ... Dpi(z)
®(z) = : : R E (20)
D u(z) o Duwm(2)
where,

7) = Z ¢zxj(”)zn (21)

neZ

and z € S!, where S! = {z € C,|z| = 1}.
From [12], we have ®@;; is the defining function of the Laurent operator with
matrix U;;. Therefore, from [12], we have ® is the defining function of U. If

b1y ¢ € W(C,£',C™), then each ¢;; € W(C,¢',C), and the infinite sum in
(21) converges uniformly on S!, from which we have ®;; is continuous on S'.

Theorem 4.1 Suppose ¢y, ...... ,b,, € W(C, £"). Then, the operator U described
in 15 with U;j(k,s) = ¢, ;(k —s),k,s € Z is a Block Laurent operator on I*(Z)"
with symbol ®. Moreover the operator U satisfies the inequalities

@Il 2y < | Udl[pzyr < 11O/ ]1dl 7z (22)
Vd = (dy,...,dn) € F(2)", where [|1D]|,, = rrgal)c||(1>(x)|\ﬂ_ﬂS and

|||, = néz;n||<l)(x)\|ﬂ_ﬂ§, where ||.||;;s denotes the Hilbert Schmidt norm.

Proof

1Ud|lp 2 = ZHZUMZII

=2 2| Z Ued)(
k=1 neZ j=

= / |Zzz¢jk I—n)d )ezmlx|2dx
=1 leZ neZ j=

— - ¢ 21n (s4n)x|2 d
2 LIS E R e

— - / Z Z d)jk e2isx Zdj(n)ezmnx|2dx
=1 j=1 seZ nez

-3 / |Z () S () v,

= neZ

Let fi(x) =Y ,c7di(n)e*™™ and f(x) = (fi(x),...,fu(x)). Then, by Parseval’s
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Shift invariant spaces in L>(R, C™) with m generators

Identity, ||| = > ez |dj(n)*,j =1,...,m and hence ||f||> = ||d||>. Also denote
D= [Dy,.. .,CI)m]T where @;,j = 1,...,m are the rows of ®. Then,

0y = / @40 (o) s

/ () ()] 2.

Then U satisfies 22. O

Corollary 4.1 Let F = {¢y,...... bt C L*(R,C™), such that {tc¢; k€ Z,i=
.,m} forms a Riesz basis for V(F) and ||®||, > 0. Then Z is a stable set of
sampling for V(F) iff there exists y > 0 , such that

|det(®*(2)®D(z))| >y a.e.z€S". (23)

Proof Let the sampling set be X = Z. Then, U is a block Laurent operator with
symbol @ and hence, U*U is a block Laurent operator with symbol ®*®. It follows
from theorem 4.1 that U is bounded above and below, which is equivalent to U*U
invertible, which shows that Z is a stable set of sampling for V(F). O

Example 4.2 Let f be defined by

44+3x —-4/3<x<0
fx)=q¢4-3x 0<x<4/3
0 otherwise

Define ¢, = (f,0); ¢, = (0,f). Then ¢,¢, € L>(R,R*). We have B=
{Ttn® |, Tm, : n,m € Z} forms a Riesz basis for V(F). In fact, we have {t,¢; : n €
Z} forms a Riesz basis for V(¢;),i = 1,2. Also (t,¢, Tm,) =0 for nme Z.
Therefore, V(F) = V(¢,) © V(¢,) and thus B is a Riesz Basis for V(F). The matrix
of the corresponding Laurent operator is given by

U{ Uiy Uy

:IZZZ—>1222,
U, U } (2) (2)

where U, ; = U;, = 0. Further,

141 0 0
Uig = 01 41 O =Usp
0 01 4 1
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In this case we can see that U is invertible being diagonally dominant, hence U*U
and therefore Z is a stable set of sampling for f.

5 An illustration

We further illustrate regular sampling and reconstruction using Matlab by taking an
example in L*(R, Rz)- Define ¢, = (¢1,1’¢1,2) and ¢, = (¢2,17<f>2,2) where
$11 = €7x2,¢1,2 = (4 — 2)6’7& We take ¢y = 15,02, = ¢y;. Let f=
(fi,.fo) € V(¢y, ¢2) be a finite length signal in the interval [—20,20] defined by
f= Zi—ljs c,( )tk$;, where c¢; and ¢, are defined by c(—15)=

—1,¢1(=13) =5, c1(—11) =1,¢1(=9) =1,¢/(=8) = 1,¢1(=5) =3, ¢1(0) =
17C1(3)—2 61(5) 23 1(9)_1 61(11)_—1,61(13):—1,61(14):_7] and

( 15) = —2 CQ( 13) Z%, ( 11) = 1,C2(—9) = 1,6‘2(—8) = 1,6‘2(—5) =
2,cz(O) =1,c(3) (5 ): (9):%,cz(ll):—1,c2(13):—1,c2( 4)

=11 Also ¢;(i) =0 and o (i) = O for the remaining values of i.
Here,

D 1(z) ¢’2=1(Z)]
®i2(z) D@aa(2) )

where @ (z) =Y, ;e 7" and  @ya(z) = 3,5 (4n? —2) w2 Also
Dy = Dyo, Dy =@y, In this case ||D()]]> = ||®1i(2)|]* + ||(I>1‘2(z)||2—|—
1®21(2)|* + H<Dzz( )P = 2|01 (2)I1” + [[@12(2)[*). Tt can be shown that
||[@11(2)]] >3-2>0 for ze€ s'. S' being compact, we have
min_ g ||<I)1,1( )|| > 0, so that ||®||, > 0.

Figure 1 shows the original function together with its samples taken at integer

points. Figure 2 shows the reconstructed function. The relative reconstruction error

anrg fn’flmHLz([Rﬂ:”’) is 1 2439 % 10 13

WorgHLZ(u;qq: my

O(z) = [

given by

Fig. 1 f Original

f2(x)
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3
=2
o
3 '
k5]
2
& 04
g
-1
2
3
4
% /,/~ 20
o / 10
-2 - 0
4T~ _— 10
reconstructed f1(x) 6 .20 X

Fig. 2 f Reconstructed
6 A sampling formula

In this section, we obtain a sampling formula for functions in V(F) with integer
samples.

Theorem 6.1 Ler F={¢,...... bt CW(C, L, C")  be such  that
{tw®1s.--sTu,, : n € Z} forms a Riesz basis for V(F). Suppose there exists a
y > 0 such that

{z€S": |det®(z)| <y} (24)
has measure zero, where ®f is the symbol of the block Laurent operator U*U

associated with the sample set Z. Then, Vf € V(F), we have

m

F@) =375 (W) () (k — n)ey(x — k), (25)

ji=1knez

where ¥ = [, ;] is the symbol associated with inverse block Laurent operator with
sampling set Z.

Proof For f € V(F), we have
Fo) =30 ¢k)d;(x —k). (26)
=1 kez

Writing U as U=[U',..,U" where each U'=[U;,,...,U;,]" and
c=(c.. .cm)T, then for the sampling set Z, we can write (26) as Uc = Y where
Y = (f(x;)),cz- Then U*Uc=U"Y. Since for y>0 we have, {zeS":
|det®' (z)| <y} has measure zero, U*U is invertible. As U*U is a block Laurent
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operator with symbol @, (U*U )_1 will be a block Laurent Operator with symbol,
say, ¥ = [l <;j < where ¥ = (@) 7" Let

(U'U) ' =L= L], i,j<m. (27)
Then,
cp= i iL,,pU,fiﬁ = iL,y,,U’*Y.
i=1 =1 =1
Hence,
fo=3 (ZLZJU’*Y> ¢;(x — k)
j=1 kez \ I=1 X
:Z (Z (L1j)in(U Y)(ﬂ)) ¢;(x — k)
j=1 kezZ \ I=1 neZ X
= Z (Z %(k - n)(U’*Y)(n)> ¢;(x — k)
j=1 kez \I=1 nez X
=" S W) )k — )y (x — k)
Jil=1knez
O

7 Perturbation of a stable set of sampling

In this section we prove that if a set Y is “sufficiently close” to a stable sampling set
X, then Y will also turn out to be a stable set of sampling for V(F). For a similar
theorem in the classical case we refer to [15, 24].

Definition 7.1 For ¢ > 0,aset Y = {y; : j € Z} is said to be in a ¢ - neighbourhood
of X ={x;:j € Z},if |xj — yj|<9,Vj € Z.

Let
uf, ..o Uy
Ut=1| ¢ n (28)
uy, ... UL,
For each i,j € 1,...,m, let UY, be a bounded

operator on ¢*(Z) where Uf; is defined by the infinite matrix

Ui},(j(k7 5) = ¢iJ(xk — ).

and [|UX]| = supy <ij<ml|U]l,p-
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Theorem 7.2 Let ¢; for each j=1,...,m be a continuous C" valued function
having compact support in R. Then Ye > 0, there exists 6 > 0 such that whenever Y
is in a d-neighbourhood of X, ||UX — UY|| <e .

Proof Let ¢; = (¢; ;- P;,)- Leti € {i,...,m}. Since ¢, has compact support in
R, ¢;; also has compact support in R. Also ¢;;:j=1,...,m is continuous.
Therefore, there exists an integer N € N such that

Z|¢]l - jl Z |¢jl - d)]l( )| (29)

kez k[ < N

Here lIkll denotes the Euclidean norm of k. Being continuous over a compact sup-
port, ¢;; is uniformly continuous in R. Therefore given € > 0, there exist a 6 > 0,
such that

€
1) = b1, < =y Whenever  [lx —y[[ <o.

(k= [kl <N)°

Suppose Y is in this J- neighbourhood. Then ||x; — y;|| <6 for every I € Z. Hence,

> i — ¢ —k)|<e, VIEZ.
kez
This implies that,
supiez » | (x by — k)| <e. (30)
kez
Similarly, it can be shown that
supkEZZ|¢jl - ¢jl( l)|<€ (31)
lez

Therefore , by Schur’s test, for any bounded operator A on ¢>(Z) described by a
matrix [ax,] we have

IA[| < Vap,
where o = supicz Y ez |axi| and B = suprez >,z |axi|. Then, using (30) and (31),
we get ||UY — U/)| — UY|| <€ being supremum of the indi-
vidual norms for i,j € {1,...,m}. O

Definition 7.3 A sampling set X = {x; : i € Z} is said to be separated by J, if
sep(X) = infiz|xx — x| > 0 for some J > 0.

Theorem 7.4 Let ¢; for each j = 1,...,m be continuous C" valued functions on R
satisfying the decay condition ||¢;(x )H S W eRj=1,...,mwhere c >0 is
a constant and o. > 1. Further assume that {debj :j=1,...,m} is a Riesz basis for

V(F). Suppose X ={x;:i € Z} is a stable set of sampling for V(F) and it is
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separated by O for some &y > 0. Then there exists 0< < 2 such that whenever Y

is in a 0 neighbourhood of X, Y will be a stable set of samplmg for V(F).

In order to prove the theorem, we prove the following.

Lemma 7.5 Let ¢, for j=1,...,m be continuous C" valued functions on R
satisfying the decay condition ||¢; ( )| < T VW ERj=1,...,mwhere c >0 is
a constant and o. > 1. Further, assume that {rkq’>j :j=1,...,m} is a Riesz Basis for

V(F). Then, for any sampling set X = {x; : i € 7}, the family of operators {UX :
sep(X) >0} is uniformly bounded.

Proof Consider UZ-XJ- :i,j € {1,...,m}. We will show that the row and column sum
of ULXJ is bounded for every X with sep(X) > 0.
We have,
c
i + )< ) —————,VneL 32
; J ; T+ [on + | (32)

The RHS converges uniformly . Therefore, the LHS also converges uniformly to a
continuous function.
Hence we have,

Z i ; (X + k)| <o, Vn € Z, < 00.
keZ
Thus,

kezzkbuxn— ) <a,VneZ a<oo. (33)

Also, since X is separated by ¢ for each k € Z, there exists an ny € Z such that
|x, — k| > 6(n — ng),Vn € Z. Then for each k € Z we have,

c
Z ‘(rbi,j(xn -k < Zm

neZ nez

c
_ZlJré“n—no) z:1+5°‘(no—n)°C

n>ng n<ngp

_;Ha“n +Zl+5°‘

= c
—2CZT5”)(X <00.

n=0

Thus,
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Z|¢ij(xn_k)|§ﬁ5aVk€ z (34)

nez

Hence, by (33) and (34), by Schur’s lemma we have ||UX||<\/af;s. Thus, the
family of operators {UX : sep(X) >4} is uniformly bounded. O

Proof of theorem 7.4 Let X be a stable set of sampling with sep(X) = J¢. Let Y be

in a % neighbourhood of X.
We have for k,l € Z,

e —xi| =k —ye+y—vi+y—x|kleZ
< xe = el + Ik = yil + [y — x|

SR I—
=5 Yk — Yi|-
Thus,
I
|)’k—yl|2|xk—xl|—70
do
> 5y — 2
=00 =
_50
==

In other words, sep(Y) > ‘3—2" From lemma 33 , we have ||UY|| <M for all oper-

ators U in {U" : sep(Y) > %} for some M > 0. In particular, ||UX|| < M, since X is
1

MU UN)P

there exist 0 < < %“ such that ||[UX — UY|| <e whenever Y is in a -neighbourhood

of X.

a stable set of sampling with sep(X) = d9. By theorem 7.2, for ¢ =

U UX — urUY|| = [UXUY - XUt + U U - 0YUY|
<||UXU* - uXUY|| + ||UX UY - U U
= [[UX)|IUX = U]+ [|lu"|uX = U]
a1
l(ux %)~

Thus UY"UY is invertible, whenever Y is in a & neighbourhood of X, proving our
assertion. O
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