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Let A be a complex unital Banach algebra, a ∈ A, n ∈ Z+ and ε > 0. The 
(n, ε)-pseudospectrum Λn,ε(a) of a is defined as

Λn,ε(a) := σ(a) ∪ {λ /∈ σ(a) : ‖(λ− a)−2n‖1/2n ≥ 1
ε
}.

Here σ(a) denotes the spectrum of a. The usual pseudospectrum Λε(a) of a is a 
special case of this, namely Λ0,ε(a). It is proved that (n, ε)-pseudospectrum approx-
imates the closed ε-neighbourhood of spectrum for large n. Further, it has been 
shown that (n, ε)-pseudospectrum has no isolated points, has a finite number of 
connected components and each component contains an element from σ(a). Some 
examples are given to illustrate these results.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let us begin with the following motivating example, first considered by E.B. Davies (see [7]):

for δ ∈ R, let Aδ : l2(Z) → l2(Z) be defined by

(Aδx)(n) =
{
δx(n + 1), n = 0
x(n + 1), n �= 0, n ∈ Z.

(1)

For δ �= 0, the spectrum σ(Aδ) = {z ∈ C : |z| = 1} and for δ = 0, σ(A0) = {z ∈ C : |z| ≤ 1}. Observe 
that Aδ → A0 as δ → 0, but the Hausdorff distance dH(σ(Aδ), σ(A0)) = 1 for all δ �= 0.

As Hansen observed in [10], this situation is of concern to a numerical analyst because if one attempts to 
compute the spectrum of an operator using numerical methods on a computer, then due to round off and 
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other errors, the result that one would get will be the spectrum of a slightly perturbed operator. But as 
the above example shows, this may be quite away from the spectrum of the original operator. In order to 
avoid this kind of discontinuous behaviour of the spectrum and to find a better approximation of spectrum, 
Hansen first introduced the concept of (n, ε)-pseudospectrum in [10] for operators on separable Hilbert spaces 
and investigated further its approximating properties in [11] and [12]. The theory of (n, ε)-pseudospectrum
extends the well known theory of ε-pseudospectrum. This was introduced for studying non-normal matrices.

A detailed treatment of ε-pseudospectrum for matrices and operators along with several applications can 
be found in [22] and [23]. Many authors have studied ε-pseudospectra of operators on Hilbert spaces and 
Banach spaces (for instance, see [1], [4], [5], [6], [15] and [16]). Recently ε-pseudospectrum of an element of 
an arbitrary Banach algebra has been studied elaborately in [14].

Hansen originally described the (n, ε)-pseudospectra for operators using the involution on operators on 
Hilbert spaces and computed (n, ε)-pseudospectra of some finite matrices using singular values. Since the 
operators on a Banach space do not have involution, M. Seidel presented a different theoretical approach 
using rectangular finite sections in [19]. His approach made use of the concepts of injection and surjection 
modulus.

As the theory of (n, ε)-pseudospectra progresses, it is important to study this notion in a more general 
setting. In a recent pre-print, A.C. Hansen and O. Nevanlinna (see [13]) have defined and extended the 
notion of (n, ε)-pseudospectra to an arbitrary Banach algebra and mentioned the complexities in extending 
the main approximating theorem i.e. Theorem 2.1. In this note, we aim to study this concept in a Banach 
algebra in a systematic way by proving several important results.

In Section 2, some elementary properties of (n, ε)-pseudospectrum of an element of a Banach algebra are 
discussed. Whereas some of these (such as Theorem 2.8, Corollary 2.23) are analogous to the properties of 
pseudospectrum, in some cases (for example, Theorem 2.13) a few additional conditions are added to get 
the desired result for the general case. Also, it is shown that (n, ε)-pseudospectrum approximates the closed 
ε-neighbourhood of σ(a) as n grows larger (Theorem 2.8 (3)). This provides an important tool for spectral 
approximation (Remark 2.9). Gn-class elements are introduced. Using functional calculus for derivatives, 
the scalar elements are also characterized in terms of their (n, ε)-pseudospectra (Corollary 2.23).

A few topological aspects of (n, ε)-pseudospectrum are discussed in Section 3. For a fixed element a in a 
Banach algebra A and n ∈ Z+, the map ε �→ Λn,ε(a) is right continuous (Theorem 3.1). Also it is shown that 
Λn,ε(a) has no isolated points, has a finite number of components and each component contains an element 
from σ(a) (Theorem 3.3 and Theorem 3.4). Finally, as an application and illustration, we have considered 
the operator Aδ in Example (1) and established that dH(Λn,ε(Aδ), σ(Aδ) + D(0, ε)) → 0 as n → ∞. Also, 
it is shown explicitly that dH(Λn,ε(Aδ), Λn,ε(A0)) → 0 as δ → 0. The question whether this happens also in 
case of an arbitrary Banach algebra, or in other words whether the map a �→ Λn,ε(a) is continuous needs 
further detailed investigation. This will be taken up in future.

2. Definitions and some elementary properties of (n, ε)-pseudospectrum

Notation: Throughout the paper we will use the following notation:

B(μ, r) := {z ∈ C : |z − μ| < r}, D(μ, r) := {z ∈ C : |z − μ| ≤ r}. For Ω ⊆ C, Ω + D(0, r) :=
⋃
μ∈Ω

D(μ, r).

For Ω ⊆ C, Ω and δΩ denote the closure and the boundary of Ω respectively.
B(H) denotes the set of all bounded linear operators on a separable Hilbert space H. K(C) denotes the 

set of all non-empty compact subsets of C. For K1, K2 ∈ K(C), the Hausdorff distance between K1, K2 is 
defined by

dH(K1,K2) = max{ sup d(a,K2), sup d(b,K1)}

a∈K1 b∈K2
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where d(a, K) := inf
k∈K

|a − k|. Then (K(C), dH) is a metric space.
Cn×n denotes the space of n × n matrices over C.

Further, unless specified otherwise, A will always denote a complex Banach algebra with identity 1. We 
identify λ with λ.1. Let a ∈ A. The spectrum of a is denoted by σ(a) and is defined as

σ(a) := {λ ∈ C : λ− a is not invertible}.

The spectral radius a is denoted by r(a) and is defined as

r(a) := sup{|λ| : λ ∈ σ(a)}.

A Banach algebra A with an involution a → a∗ which satisfies

‖a∗a‖ = ‖a‖2 ∀a ∈ A

is called a C∗-algebra.
For ε > 0, the ε-pseudospectrum of a is denoted by Λε(a) and is defined as

Λε(a) := σ(a) ∪ {λ /∈ σ(a) : ‖(λ− a)−1‖ ≥ 1
ε
}.

Hansen (2008) defined the (n, ε)-pseudospectrum of T ∈ B(H) as the set

Λ∗
n,ε(T ) := σ(T ) ∪ {λ /∈ σ(T ) : ‖(λ− T )−2n‖1/2n

>
1
ε
}.

First we shall mention the following theorem of Hansen which provides some basic properties of the 
(n, ε)-pseudospectrum of a bounded linear operator on a Hilbert space. To start with, let T ∈ B(H).For 
n ∈ Z+, define γn(T, .) : C → [0, ∞] by

γn(T, z) = min[min{λ1/2n+1
: λ ∈ σ(S(z)∗S(z))}, min{λ1/2n+1

: λ ∈ σ(S(z)S(z)∗)}], (2)

where S(z) = (T − z)2n .

Theorem 2.1 (Hansen). Let T ∈ B(H) and ε > 0. Let n ∈ Z+ and γn(T, .) be as in (2). Then the following 
holds:

1. Λ∗
n+1,ε(T ) ⊆ Λ∗

n,ε(T ),
2. Λ∗

n,ε(T ) = {z ∈ C : γn(T, z) < ε},
3. {z ∈ C : γn(T, z) < ε} = {z ∈ C : γn(T, z) ≤ ε},
4. dH(Λ∗

n,ε(T ), σ(T ) + B(0, ε)) → 0 when n → ∞, and
5. if {Tk} ⊆ B(H) is such that Tk → T in norm as k → ∞, then dH(Λ∗

n,ε(Tk), Λ∗
n,ε(T )) → 0 when k → ∞.

The properties 2 and 3 are based on the functions γn which in turn depend on involution. While studying 
these properties in a Banach algebra, Hansen and Nevanlinna mentioned a few difficulties in [13]. In this 
note, we shall present these properties in modified forms with elementary proofs.

Definition 2.2. Let A be a Banach algebra and a ∈ A. For n ∈ Z+ ∪{0} and z ∈ C, define functions γn(a, z)
and γ(a, z) by
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γn(a, z) =
{
‖(z − a)−2n‖−1/2n , if z /∈ σ(a)
0 , if z ∈ σ(a)

and γ(a, z) = d(z, σ(a)).

The next theorem says that the newly defined functions γn coincide with Hansen’s definition as in (2)
when the underlying space is a C∗-algebra.

Theorem 2.3. Let A be a C∗-algebra, a ∈ A and n ∈ Z+. Then ∀z ∈ C,

γn(a, z) = min[min{λ1/2n+1
: λ ∈ σ(S(z)∗S(z))}, min{λ1/2n+1

: λ ∈ σ(S(z)S(z)∗)}]

where S(z) = (a − z)2n .

Proof. For the sake of simplicity, let us denote the right hand side of the expression by δn(a, z). Let us 
consider the following two cases.

Case 1: Suppose z /∈ σ(a). Let S := (a −z)2n . Then S is invertible and so are S∗S and SS∗. Thus 0 /∈ σ(S∗S)
and 0 /∈ σ(SS∗). Again, we know that the non zero spectral values of S∗S and SS∗ are same and their 
spectrum lie in the positive real line. Suppose δn(a, z) = λ

1/2n+1

0 . Note that σ((S∗S)−1) = { 1
λ : λ ∈ σ(S∗S)}.

Thus we have,

‖(S∗S)−1‖ = r((S∗S)−1) = max{ 1
λ

: λ ∈ σ(S∗S)} = 1
min{λ : λ ∈ σ(S∗S)} = 1

λ0
.

Finally we get,

δn(a, z) = λ
1/2n+1

0

= 1
‖(S∗S)−1‖1/2n+1

= 1
‖S−1‖1/2n

= 1
‖(a− z)−2n‖1/2n .

Case 2: Suppose z ∈ σ(a). Then S := (a − z)2n is not invertible. Hence S∗ is not invertible. This means 
either SS∗ or S∗S is not invertible, for otherwise S∗ would have both left and right inverse and hence 
invertible. So either 0 ∈ σ(SS∗) or 0 ∈ σ(S∗S). Hence δn(a, z) = 0. �
Remark 2.4. In [12], Hansen proved the second part of the proof of the preceding theorem for T ∈ B(H)
using polar decomposition and considered various cases. However, our proof is elementary and applicable 
to any C∗-algebras.

Since we shall make use of properties of the functions γn(a, z) and γ(a, z) in many proofs, we collect some 
important properties in the following Proposition.

Proposition 2.5. Let A be a unital Banach algebra, a ∈ A and n ∈ Z+ ∪ {0}. Then the following holds:

1. γn(λ, z) = |λ − z| ∀λ, z ∈ C.
2. γn(a, z) and γ(a, z) are continuous ∀z ∈ C.
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3. γn(a, z) ≤ γn+1(a, z) ≤ γ(a, z) ∀z ∈ C.
4. γn(a, z) converges to γ(a, z) ∀z ∈ C. The convergence is uniform on compact subsets of C.
5. γn(a + λ, z) = γn(a, z − λ) ∀λ ∈ C.
6. γn(λa, z) = 1

|λ|γn(a, zλ ) ∀z ∈ C and λ ∈ C \ {0}.
7. |z| − ‖a‖ ≤ γ0(a, z) ∀z ∈ C. If a is invertible, then 1

‖a−1‖ − |z| ≤ γ0(a, z) ∀z ∈ C.

Proof. The proofs are simple. We indicate the proofs for the sake of completeness.

1. Straightforward from definition.
2. Clearly, γ(a, z) is continuous ∀z ∈ C.

Let z0 ∈ δσ(a). Suppose {zm} ⊆ C \ σ(a) is a sequence such that zm → z0. Then γn(zm) = ‖(zm −
a)−2n‖−1/2n → 0 = γ(z0) as m → ∞, proving continuity at z0. The continuity at all other points in C
is obvious.

3. For any b ∈ A, observe that {‖b2m‖1/2m} is a decreasing sequence and by spectral radius formula, we 
have r(b) = limm→∞ ‖b2m‖1/2m . So, r(b) ≤ ‖b2m‖1/2m ∀m ∈ Z+. For z /∈ σ(a),

d(z, σ(a)) = 1
r((z − a)−1) ≥ 1

‖(z − a)−2m‖1/2m ∀m ∈ Z+ [ Replace b by (z − a)−1].

Hence, γn(a, z) ≤ γn+1(a, z) ≤ γ(a, z) ∀z ∈ C \ σ(a). For z ∈ σ(a), γn(a, z) = 0 = γn+1(a, z) = γ(a, z).
4. First note that for z ∈ σ(a), γn(a, z) = 0 = γ(a, z) ∀n. Next, let z /∈ σ(a) and b = (z − a)−1. Then

lim
n→∞

γn(a, z) = lim
n→∞

1
‖b2n‖1/2n = 1

r(b) = 1
r((a− z)−1) = d(z, σ(a)) = γ(a, z).

Thus γn(a, z) → γ(a, z) ∀z ∈ C. Applying Dini’s theorem, γn(a, .) converges to γ(a, .) uniformly on 
compact subsets of C.

5. By spectral mapping theorem, we have σ(a + λ) = λ + σ(a) ∀λ ∈ C. Thus, ∀λ, z ∈ C, we have

γn(a + λ, z) =
{
‖{(z − λ) − a}−2n‖−1/2n , if z − λ /∈ σ(a)
0 , if z − λ ∈ σ(a)

= γn(a, z − λ).

6. Note that z ∈ σ(λa) ⇐⇒ z
λ ∈ σ(a) for λ ∈ C \ {0}. So, ∀z ∈ C and λ ∈ C \ {0}, we have

γn(λa, z) =
{
|λ|‖( z

λ − a)−2n‖−1/2n , if z
λ /∈ σ(a)

0 , if z
λ ∈ σ(a)

= |λ|γn(a, z
λ

).

7. Let |z| > ‖a‖. Then ‖(z−a)−1‖ ≤ 1
|z|−‖a‖ and the first part follows. For the second part, let |z| < 1

‖a−1‖ . 
Then (1 − za−1) is invertible and

‖(z − a)−1‖ = ‖a−1(1 − za−1)−1‖

≤ ‖a−1‖
1 − |z|‖a−1‖ .

So, 1
‖a−1‖ − |z| ≤ ‖(z − a−1)‖−1. Consequently, 7 follows. �
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Definition 2.6. Let A be a unital Banach algebra and a ∈ A. For ε > 0 and n ∈ Z+, the (n, ε)-pseudospectrum 
of a is defined by

Λn,ε(a) := σ(a) ∪ {λ /∈ σ(a) : ‖(λ− a)−2n‖1/2n ≥ 1
ε
}.

Equivalently, Λn,ε(a) := {λ ∈ C : γn(a, λ) ≤ ε}.

Remark 2.7.

1. We observe that the (0, ε)-pseudospectrum is nothing but the usual ε-pseudospectrum.
2. We have used ‘≥’ sign in the definition of (n, ε)-pseudospectrum instead of ‘>’ sign. Many authors 

(see [14]) use the former definition for the case n = 0. Also ‘≥’ sign has been used in [19] to define 
the (n, ε)-pseudospectrum for operators on complex Banach spaces. A discussion regarding these two 
definitions (for n = 0) can be found in [14] and [21].

The following theorem provides some elementary properties of the (n, ε)-pseudospectrum.

Theorem 2.8. Let A be a Banach algebra. Let a ∈ A, n ∈ Z+ and ε > 0. Then the following results hold:

1. Λn,ε(λ) = D(λ, ε) ∀λ ∈ C.
2. Λn+1,ε(a) ⊆ Λn,ε(a).
3. σ(a) + D(0, ε) = ∩

n∈Z+
Λn,ε(a). Further, dH(Λn,ε(a), σ(a) + D(0, ε)) → 0 as n → ∞.

4. σ(a) = ∩
ε>0

Λn,ε(a).
5. Λn,ε1(a) ⊆ Λn,ε2(a) for 0 < ε1 < ε2.
6. Λn,ε(a + λ) = λ + Λn,ε(a) for λ ∈ C.
7. Λn,ε(λa) = λΛn, ε

|λ|
(a) for λ ∈ C \ {0}.

8. Λn,ε(a) ⊆ D(0, ‖a‖ + ε). Further, if a is invertible and 0 < ε < 1
‖a−1‖ , then

Λn,ε(a) ⊆ {z ∈ C : 1
‖a−1‖ − ε ≤ |z| ≤ ‖a‖ + ε}.

9. Λn,ε(a) is a non-empty compact subset of C.

Proof. Proofs of 1, 2, 6, 7 and 8 directly follow from 1, 3, 5, 6 and 7 respectively of Proposition 2.5. Also 5 
follows directly.

To prove 3, we use 3 and 4 of Proposition 2.5. Note that

λ ∈ σ(a) + D(0, ε) ⇐⇒ γ(a, λ) ≤ ε

⇐⇒ γn(a, λ) ≤ ε ∀n ∈ Z+

⇐⇒ λ ∈ Λn,ε(a) ∀n ∈ Z+.

Hence the equality follows. The latter part follows from the fact that a decreasing sequence of non-empty 
compact sets converges to their intersection in Hausdorff metric.

To prove 4, we observe that

λ ∈ ∩
ε>0

Λn,ε(a) ⇐⇒ γn(λ, a) ≤ ε ∀ε > 0

⇐⇒ γn(λ, a) = 0

⇐⇒ λ ∈ σ(a).
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For proving 9, we note that Λn,ε(a) is closed as γn(a, .) is continuous (by 4 of Proposition 2.5), bounded by 
8 and non empty as it contains σ(a). �
Remark 2.9. The result 3 of Theorem 2.8 is about the approximation of the closed ε-neighbourhood σ(a) +
D(0, ε) of the spectrum. It says that if we have a good method of computing Λn,ε(a), then we can get 
information about σ(a). This aspect of computing (n, ε)-pseudospectrum is discussed in [11] for bounded 
operators on separable Hilbert spaces. This involves the use of the functions γn(T, .). A version of this result 
is known in the literature for operators on Hilbert spaces and Banach spaces. It was also observed in [19], 
that this can be extended to the general case of elements of a Banach algebra. Our proof is more elementary.

Another way of approximation is given in Theorem 2 in [19] for operators on Banach spaces. The next 
theorem shows that a similar result is true for elements of a Banach algebra. Its proof is also similar to the 
one given in [19].

Theorem 2.10. Let A be a unital Banach algebra and a ∈ A. Then for η > ε > 0, ∃n0 ∈ N such that ∀n ≥ n0,

σ(a) + D(0, ε) ⊆ Λn,ε(a) ⊆ σ(a) + D(0, η).

Proof. Let η > ε > 0. Note that the first inclusion follows from 3 of Theorem 2.8 for all n. To prove the 
second inclusion, let R > ‖a‖ +η. Then σ(a) +D(0, η) ⊆ D(0, R). Applying Proposition 2.5, we have uniform 
convergence of γn to γ on D(0, R). Thus, ∃n0 ∈ N such that

γ(a, z) − (η − ε) < γn(a, z) for all z ∈ D(0, R) and n ≥ n0.

Let z ∈ Λn,ε(a). Then, for n ≥ n0, γ(a, z) ≤ γn(a, z) + (η − ε) ≤ η, i.e., d(z, σ(a)) ≤ η. Hence z ∈
σ(a) + D(0, η). �
Remark 2.11. We note that in general, Λn,ε(a) �= Λ∗

n,ε(a). In other words, ‖(λ − a)−2n‖ can be constant 
on open sets. There are known examples of this given in [2] and [20]. Also it follows from Theorem 2.10
that the level set {λ ∈ C : γn(a, λ) = ε} becomes small for large n. This was shown by Seidel in [19] for a 
bounded linear operator on a Banach space X.

Remark 2.12. The following property is known for ε-pseudospectra (see [8]):
⋃

‖b‖≤ε

σ(a + b) ⊆ Λε(a). (3)

Moreover, under certain conditions, this inclusion becomes an equality and thus offers a method to 
approximate the pseudospectrum of a by considering spectra of small perturbations of a. This is not true 
for (n, ε)-pseudospectra in general. See Example 2.14 below. We consider a much weaker version of the 
above property for (n, ε)-pseudospectra in the following:

Proposition 2.13. Suppose A is a Banach algebra, a ∈ A and ε > 0. Suppose b ∈ A is such that ab = ba and 
‖b2n‖1/2n ≤ ε for some n ∈ Z+. Then

σ(a + b) ⊆ σ(a) + D(0, ε) ⊆ Λm,ε(a) ∀m.

Proof. Let μ ∈ σ(a + b). Since ab = ba, σ(a + b) ⊆ σ(a) + σ(b) (see Theorem 11.23 of [18]). Thus μ = z +w

for some z ∈ σ(a) and w ∈ σ(b). Hence |w| ≤ r(b) ≤ ‖b2n‖1/2n ≤ ε. The other part follows from 3 of 
Theorem 2.8. �
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The commutativity of a and b can not be dropped from the preceding theorem as the following example 
shows.

Example 2.14. Let A = C2×2 with ‖.‖1 norm (maximum absolute column sum). Consider a =
( 0 9

0 0

)
and 

b =
( 0 0

1 0

)
. Then a2 = b2 = 0 and ab �= ba. Also σ(a + b) = {3, −3}. Observe that ‖αa + β‖1 = 9|α| + |β|

∀α, β ∈ C. Let λ /∈ σ(a) = {0}. We have (λ − a)−1 = 1
λ + a

λ2 . Let m ∈ N. Then

(λ− a)−m = (1
λ

+ a

λ2 )m = 1
λm

+ ma

λm+1

and consequently ‖(λ − a)−m‖1 = 1
|λ|m + 9m

|λ|m+1 . Take m = 2n. Then

λ ∈ Λn,ε(a) ⇐⇒ |λ| + 9 × 2n

|λ|2n+1 ≥ 1
ε2n

⇐⇒ |λ|2n+1 ≤ (|λ| + 9 × 2n)ε2
n

.

Choose ε = 1 and n = 1. Then it follows that 3 /∈ Λ1,1(a).

Remark 2.15. The inclusion σ(a) + D(0, ε) ⊆ Λn,ε(a) can be proper. We give an example below.

Example 2.16. Let A = {a ∈ C2×2 : a =
( x y

0 x

)
} with norm given by ‖a‖ = |x| + |y|. It is clear that 

A is a Banach algebra. Let us consider the element a =
( 0 1

0 0

)
. Observe that a2 = 0 and ‖αa + β‖ =

|α| + |β| ∀α, β ∈ C.
Let λ /∈ σ(a) = {0}. Then (λ − a)−1 = 1

λ + a
λ2 and so ‖(λ − a)−1‖ = 1

|λ|2 ‖λ + a‖ = 1+|λ|
|λ|2 .

Note that

λ ∈ Λε(a) ⇐⇒ |λ|2 ≤ ε + |λ|ε

⇐⇒ (|λ| − ε

2)2 ≤ ε + ε2

4

⇐⇒ |λ| ≤ ε

2 +
√

ε + ε2

4 .

Thus, Λε(a) = D(0, ε2 +
√

ε + ε2

4 ) � D(0, ε) = σ(a) + D(0, ε). For n ∈ Z+, it can be verified (similar to 
Example 2.14) that

λ ∈ Λn,ε(a) ⇐⇒ |λ| ≤ (|λ| + 2n)
1

2n+1 ε
2n

2n+1 .

Thus, if λ, ε and n are such that ε < |λ| ≤ (|λ| + 2n)
1

2n+1 ε
2n

2n+1 , then λ ∈ Λn,ε(a) but λ /∈ σ(a) +D(0, ε). For 
example, suppose n = 1, ε = 1

2 and consider λ such that 12 < |λ| < 2
3 . Then λ ∈ Λn,ε(a) but λ /∈ σ(a) +D(0, ε).

Again λ ∈ Λn,ε(a) ⊆ D(0, 1 + ε) ⇒ |λ| ≤ 1 + ε.
So λ ∈ Λn,ε(a) ⇒ |λ| ≤ (1 + ε + 2n)

1
2n+1 ε

2n
2n+1 .

Choose k such that n ≥ k ⇒ (1 + ε + 2n) ≤ 2n+1.
Then for n ≥ k, Λn,ε(a) ⊆ D(0, Rn) where Rn = 2

n+1
2n+1 ε

2n
2n+1 . Note that Rn → ε as n → ∞.

Thus, for n ≥ k, dH(σ(a) + D(0, ε), Λn,ε(a)) ≤ dH(D(0, ε), D(0, Rn)) = Rn − ε → 0 as n → ∞.
This illustrates the abstract result 3 of Theorem 2.8.

Definition 2.17. Let A be a unital Banach algebra and n ∈ Z+. An element a ∈ A is said to be of Gn-class 
if γn−1(a, λ) = d(λ, σ(a)) ∀λ ∈ C.
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Remark 2.18. It is immediate from the above definition that a is of Gn-class iff Λn−1,ε(a) = σ(a) +
D(0, ε) ∀ε > 0. For n = 1, the above definition coincides with the familiar definition of G1-class (see [14]
and [17]). It is known that every normal element in a C∗-algebra is of G1-class.

Remark 2.19. By Proposition 2.5, we recall that

γn−1(a, z) ≤ γn(a, z) ≤ d(z, σ(a)) ∀z ∈ C.

Hence, Gn-class elements are contained in Gn+1-class elements.

Remark 2.20. In algebra A of Example 2.16, b =
( x y

0 x

)
∈ Gn iff y = 0. Indeed,

b ∈ Gn ⇐⇒ ‖(λ− b)−2n−1‖1/2n−1
= 1

|λ− x| ∀λ �= x

⇐⇒ ‖(1 − ya

(λ− x) )−2n−1‖1/2n−1
= 1 ∀λ �= x

⇐⇒ ‖1 + ya

λ− x
2n−1‖ = 1 ∀λ �= x

⇐⇒ 1 + 2n−1| y

λ− x
| = 1 ∀λ �= x

⇐⇒ y = 0.

Thus, in this algebra, G1 and Gn-class elements are same ∀n.

However, the inclusion Gn ⊆ Gn+1 can be proper for some n. Let us consider the following example.

Example 2.21. Consider the matrix a =
( 0 1

0 0

)
in the algebra A of Example 2.16. Note that a is not of 

Gn-class for any n. Recall that γ0(a, λ) = |λ|2
1+|λ| ≥

|λ|2−1
|λ|+1 = |λ| − 1 for |λ| ≥ 1. Thus

|λ| − 1 ≤ γ0(a, λ) ≤ γn(a, λ) ≤ d(λ, σ(a)) = |λ| for all n and for all λ.

Let 0 < δ < 1. Consider the set Mδ = D(0, δ) ∪ {z ∈ C : |z| = 3}. Let bδ = diag{αi} (as an operator over 
l2(N)), where {αi} is a countable dense set in Mδ. Further, σ(bδ) = Mδ. Note that bδ is a normal operator, 
hence it is of G1-class and hence of Gn-class for all n. Thus,

γn(bδ, λ) = d(λ, σ(bδ)) ∀n ∈ Z+ ∪ {0} and ∀λ ∈ C.

Consider cδ := a ⊕ bδ =
(
a 0
0 bδ

)
. Thus cδ is the direct sum of a which is not of Gn-class for any n and bδ

which is of Gn-class for every n. We shall establish that for small values of n, the behaviour of a decides 
that cδ is not of Gn-class. On the other hand, for large values of n, the behaviour of bδ decides that cδ is of 
Gn-class. First, observe that σ(cδ) = σ(a) ∪ σ(bδ) = Mδ. Then

γn(cδ, λ) = min{γn(a, λ), γn(bδ, λ)} =

⎧⎪⎪⎨
⎪⎪⎩

0 , if |λ| ≤ δ

|λ| − 3 , if |λ| ≥ 3
min{|λ| − δ, 3 − |λ|, γn(a, λ)} , otherwise.

Using 4 of Proposition 2.5, ∃m ∈ N such that for all n ≥ m we have,
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|λ| − δ ≤ γn(a, λ) ≤ |λ| + δ for all δ ≤ |λ| ≤ 3.

So, for n ≥ m,

γn(cδ, λ) = min{|λ| − δ, 3 − |λ|} = d(λ, σ(cδ)).

Thus, for n ≥ m,

γn(cδ, λ) = d(λ, σ(cδ)) ∀λ ∈ C.

For some small values of n and appropriate choice of λ and δ, we can show that cδ will not belong to 
Gn-class. For example, choose δ = 0.1, |λ| = 1 and n = 0. Then

γ0(cδ) = ‖(cδ − λ)−1‖−1 = min{1 − 0.1, 3 − 1, 1
1 + 1} = 0.5 < 0.9 = d(λ, σ(bδ)).

So, for the above delta, cδ is not of G1-class. But already we have established that it is of Gn-class for 
sufficiently large n. So Gn � Gn+1 for some n ∈ N.

The following theorem extends the holomorphic functional calculus to the derivatives of an analytic map. 
See Theorem 7.11 of [3] for details.

Theorem 2.22. Let A be a complex Banach algebra. Let O ⊆ C be an open neighbourhood of σ(a) and C be 
a closed curve in O such that C surrounds σ(a). Let f be analytic in O. We know from functional calculus:

f̃(a) = 1
2πi

∫
C

(z − a)−1f(z)dz.

Let m ∈ N. Let g = f (m), the mth derivative of f . Then g is holomorphic in O and

g̃(a) = m!
2πi

∫
C

(z − a)−(m+1)f(z)dz.

Corollary 2.23. Suppose A is a Banach algebra, a ∈ A and n ∈ Z+. Then

a = λ ⇐⇒ Λn,ε(a) = D(λ, ε) ∀ε > 0.

Proof. If a = λ, then by 1 of Theorem 2.8, Λn,ε(a) = D(λ, ε) ∀ε > 0. Conversely, in view of 6 of Theorem 2.8, 
without any loss of generality we can assume that λ = 0. Let C be the circle centred at 0 with radius ε. Clearly 
C encloses Λn,ε(a). Choose m such that m + 1 = 2n. Let f(z) = zm+1. Then g(z) = f (m)(z) = (m + 1)!z. 
Also M := sup{|f(z)| : z ∈ C} = εm+1. Thus by Theorem 2.22,

g̃(a) = m!
2πi

∫
C

(z − a)−(m+1)f(z)dz.

Since C is the boundary of Λn,ε(a), for all z ∈ C, ‖(z− a)−2n‖1/2n ≤ 1
ε , i.e., ‖(z− a)−(m+1)‖ ≤ 1

εm+1 . Thus,

‖g̃(a)‖ ≤ m!M × length of C
2πεm+1 .

So
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‖g̃(a)‖ = ‖(m + 1)!a‖ ≤ m!εm+12πε
2πεm+1 .

Thus ‖a‖ ≤ ε
m+1 ∀ε > 0. Hence a = 0. �

3. Topological properties of (n, ε)-pseudospectrum

In this section, we describe some topological properties of (n, ε)-pseudospectrum. Some of these properties 
(and also their proofs) are very similar to the corresponding properties of the pseudospectrum given in [14]. 
Also see [2], [8] and [20] for more details.

Theorem 3.1. Let A be a Banach algebra and a ∈ A. Let n ∈ Z+. Define the map Fa : R+ → K(C) by 
Fa(ε) = Λn,ε(a). Then Fa is right continuous.

Proof. Let ε0 ∈ R+ and {εk} decrease to ε0.

Claim. ∩
k∈Z+

Λn,εk(a) = Λn,ε0(a).

Note that

λ ∈ ∩
k∈Z+

Λn,εk(a) ⇐⇒ γn(a, λ) ≤ εk ∀k

⇐⇒ γn(a, λ) ≤ ε0

⇐⇒ λ ∈ Λn,ε0(a).

Again, when {εk} decreases, {Λn,εk(a)} decreases and the latter converges to ∩
k∈Z+

Λn,εk(a) in Hausdorff 

metric, i.e., dH(Λn,εk(a), Λn,ε0(a)) → 0 as k → ∞. Thus Fa is right continuous. �
Remark 3.2. Shargorodsky (see [20]) gave an example to show that the map ε �→ Λε(a) is not continuous. 
Using the same example, Krishnan and Kulkarni proved that the map a �→ Λε(a) is not continuous (see [14]).

Theorem 3.3. Let A be a Banach algebra. Let a ∈ A, n ∈ Z+ and ε > 0. Then Λn,ε(a) has no isolated 
points.

Proof. If a = λ, where λ ∈ C, then Λn,ε(a) = D(λ, ε) which has no isolated points. So assume a �= λ ∀λ ∈ C. 
Suppose Λn,ε(a) has an isolated point μ. Then there exists an r > 0 such that ∀λ with 0 < |λ − μ| < r, 
‖(λ − a)−2n‖1/2n

< 1
ε .

Case 1: Suppose μ ∈ Λn,ε(a) \ σ(a). By the Hahn–Banach theorem, ∃f ∈ A′ such that

f((μ− a)−2n

) = ‖(μ− a)−2n‖ and ‖f‖ = 1.

Let us define g : C \ σ(a) → C by g(z) = f((z − a)−2n). Then g is analytic in B(μ, r). But ∀λ with 
0 < |λ − μ| < r, |g(λ)| ≤ ‖(λ − a)−2n‖ < 1

ε2n
whereas

g(μ) = f((μ− a)−2n

) = ‖(μ− a)−2n‖ ≥ 1
ε2n .

This contradicts the maximum modulus principle.

Case 2: Suppose μ ∈ σ(a). Letting λ → μ, ‖(λ − a)−2n‖ → ∞. But for 0 < |λ − μ| < r, ‖(λ − a)−2n‖ < 1
ε2n

, 
a contradiction. �
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Theorem 3.4. Let A be a Banach algebra, a ∈ A, n ∈ Z+ and ε > 0. Then Λn,ε(a) has a finite number of
components and each component contains at least one element of σ(a).

Proof. From Theorem 2.8, we have, σ(a) +D(0, ε) ⊆ Λn,ε(a). So B(λ, ε) ⊆ Λn,ε(a) ∀λ ∈ σ(a). By compact-

ness of σ(a), ∃λ1, ..., λm such that σ(a) ⊆
m⋃
i=1

B(λi, ε) ⊆ Λn,ε(a). For each i = 1, ..., m, since B(λi, ε)

is a connected subset of Λn,ε(a), ∃ a closed component Ci of Λn,ε(a) such that B(λi, ε) ⊆ Ci. Thus 

σ(a) ⊆
m⋃
i=1

Ci ⊆ Λn,ε(a).

Claim. Λn,ε(a) =
m⋃
i=1

Ci.

If possible, let μ ∈ Λn,ε(a) \
m⋃
i=1

Ci. Let r > ‖a‖ + ε and let S := B(0, r) \
m⋃
i=1

Ci.

Then S is an open set containing μ. Let S0 be the component of S containing μ. Since C is locally 
connected, S0 is open. Again observe that S0 ⊆ ρ(a), the resolvent of a. Define g : ρ(a) → R by g(z) =
‖(z − a)−2n‖. The Hahn–Banach theorem guarantees the existence of an element φ ∈ A′ such that

φ((μ− a)−2n

)) = ‖(μ− a)−2n‖ and ‖φ‖ = 1.

Define h : S → C by

h(z) = φ((z − a)−2n

).

Then h is analytic on S and

|h(z)| ≤ ‖(z − a)−2n‖ = g(z) ∀z ∈ S ⊆ ρ(a).

Since Λn,ε(a) ⊆ B(0, r), δB(0, r) ⊆ Λn,ε(a)c. Thus

g(z) = ‖(z − a)−2n‖ <
1
ε2n ∀z ∈ δB(0, r).

We assert that g(z) = 1
ε2n

∀z ∈
⋃m

i=1 δCi. Since δCi ⊆ Ci ∀i = 1, ..., m,

g(z) = ‖(z − a)−2n‖ ≥ 1
ε2n ∀z ∈

m⋃
i=1

δCi ⊆ Λn,ε(a).

If g(z) > 1
ε2n

, then ∃ a neighbourhood V of z such that

g(λ) > 1
ε2n ∀λ ∈ V.

Since each Ci a component of Λn,ε(a), δCi ⊆ Λn,ε(a) ∀i = 1, ..., m. There must exist a point z0 ∈ V such 
that z0 ∈ Λc

n,ε(a), i.e., g(z0) = ‖(z0 − a)−2n‖ < 1
ε2n

, a contradiction. Hence our last assertion follows. Now 

δS ⊆ δB(0, r) ∪
m⋃
i=1

δCi and since S0 is component of S, so δS0 ⊆ δS.

Let z ∈ δS0. Then z ∈ δB(0, r) implies |h(z)| ≤ g(z) = ‖(z − a)−2n‖ < 1
ε2n

whereas z ∈
m⋃
i=1

δCi implies 

|h(z)| ≤ g(z) = 1
2n . In any case, |h(z)| ≤ g(z) ≤ 1

2n ∀z ∈ δS0.
ε ε
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Again, μ is an interior point of S0 and

|h(μ)| = |φ((μ− a)−2n

))| = ‖(μ− a)−2n

)‖ = h(μ) ≥ 1
ε2n .

By maximum-modulus principle, h is constant on S0 and so

g(z) ≥ |h(z)| = h(μ) ≥ 1
ε2n ∀z ∈ S0.

Hence, S0 ⊆ Λn,ε(a). Again, by continuity of h, we have

|h(z)| ≥ 1
ε2n ∀z ∈ S0.

Now if δS0 ∩ δB(0, r) �= ∅, then ∃z ∈ δS0 ∩ δB(0, r) which leads a contradiction as z ∈ δS0 gives |h(z)| ≥
1

ε2n
whereas z ∈ δB(0, r) implies |h(z)| ≤ g(z) < 1

ε2n
. Again if δS0 ∩ (

m⋃
i=1

δCi) �= ∅, then ∃j such that 

δS0 ∩ δCj �= ∅ and hence S0 ∪ Cj becomes a connected component of Λn,ε(a). But Cj is a component of 

Λn,ε(a). Hence S0 ⊆ Cj , a contradiction to the fact that S0 ⊆ B(0, r) \
m⋃
i=1

Ci. Thus δS0 = ∅, a contradiction. 

Hence Λn,ε(a) =
m⋃
i=1

Ci and each Ci obviously contains a point of σ(a). �
The above theorem is useful in the computation of (n, ε)-pseudospectrum of the operator Aδ in Exam-

ple (1). We also use this example to illustrate some results proved earlier.

Example 3.5. Let us consider the operator Aδ in Example (1). First, let us recall that

σ(Aδ) + D(0, ε) ⊆ Λn,ε(Aδ) ⊆ D(0, ‖Aδ‖ + ε) [by Theorem 2.8].

We note that for 0 < δ ≤ 1, ‖A−m
δ ‖ = 1

δ ∀m ∈ N. Thus for 0 < δ ≤ ε ≤ 1, we have

‖A−2n

δ ‖1/2n

= 1
δ1/2n ≥ 1

ε1/2n .

Hence 0 ∈ Λn,ε1/2n (Aδ). Since for δ > 0, σ(Aδ) is the circle {z ∈ C : |z| = 1}, using Theorem 3.4, Λn,ε(Aδ)
must have a component (path) containing the origin and a point on the circle. Let z = reiθ where |r| < 1. 
There exists z0 = reiθ0 ∈ Λn,ε1/2n (Aδ). Consider the element λ = ei(θ−θ0) ∈ σ(Aδ). Since Aδ is a weighted 
shift, Aδ and λAδ are unitarily equivalent (see [9]). It can be easily verified that they have the same 
(n, ε)-pseudospectrum. Then λz0 ∈ Λn,ε1/2n (Aδ) and so z = reiθ ∈ Λn,ε1/2n (Aδ).

We observe that for 0 < δ ≤ ε < 1, Λn,ε1/2n (Aδ) = {z : |z| ≤ 1 + ε1/2
n} �= σ(Aδ) + D(0, ε1/2n).

Thus, for 0 < δ < 1, Aδ does not belong to Gn-class for any n.
Also we have, in particular, Λε(Aδ) = {z : |z| ≤ 1 + ε} for 0 < δ ≤ ε ≤ 1. Again, since σ(A0) = D(0, 1), 

we have

D(0, 1 + ε) = σ(A0) + D(0, ε) ⊆ Λn,ε(A0) ⊆ D(0, ‖A0‖ + ε) = D(0, 1 + ε).

Thus, Λn,ε(A0) = D(0, 1 + ε) ∀n ∈ Z+.
We claim that dH(Λn,ε(Aδ), Λn,ε(A0)) → 0 as δ → 0.
Suppose ε > 0 and n ∈ Z+ are given. Then, for 0 < δ ≤ 1,

‖A−2n

δ ‖1/2n

= 1
δ1/2n ≥ 1

ε
⇐⇒ δ1/2n ≤ ε ⇐⇒ δ ≤ ε2

n

.
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Choose 0 < δ ≤ min{ε2n

, 1}. Then 0 ∈ Λn,ε(Aδ). By similar argument as above, Λn,ε(Aδ) = D(0, 1 + ε) and 
our claim easily follows. Thus the simple computation shows that Λn,ε(Aδ) behaves better than σ(Aδ) as 
δ → 0.

In [11], using MATLAB Hansen numerically computed and pictorially described the (n, ε)-pseudospectrum 
of the above operator for some particular choices of n, ε. Recall from the above paragraph that if 
0 < δ ≤ min{ε2n

, 1}, then Λn,ε(Aδ) = D(0, 1 +ε). In Figure 4(b) of [11], n = 2, ε = 0.025 and δ = 10−16 < ε4.
Next consider the case 0 < ε < δ ≤ 1. Note that, when δ = 1, A1 is the bilateral left shift which is a 

unitary operator and hence it is of G1-class. So

Λn,ε(A1) = Λε(A1) = σ(A1) + D(0, ε) = {z ∈ C : 1 − ε ≤ |z| ≤ 1 + ε}.

Also, for any δ such that 0 < ε < δ < 1, we have, by 8 of Theorem 2.8,

{z ∈ C : 1 − ε ≤ |z| ≤ 1 + ε} = Λn,ε(A1) ⊆ Λn,ε(Aδ) ⊆ Λε(Aδ) ⊆ {z ∈ C : 1
‖A−1

δ ‖
− ε ≤ |z| ≤ 1 + ε}

= {z ∈ C : δ − ε ≤ |z| ≤ 1 + ε}.

Thus, dH(Λn,ε(Aδ), Λn,ε(A1)) ≤ 1 − δ → 0 as δ → 1. Again this shows that Λn,ε(Aδ) behaves better than 
σ(Aδ) as δ → 1.

Let 0 < ε < 1 and 0 < δ < 1. For |λ| < 1, we have the following relation:

(λI −Aδ)−1 = −
∞∑
k=0

λkA−k−1
δ . (4)

Note that the right hand side of the above expression converges absolutely as |λ| < 1 and ‖A−k−1
δ ‖ = 1

δ ∀k. 
Suppose m ∈ N such that m + 1 = 2n. Differentiating the Equation (4), m times w.r.t. λ,

(−1)mm!(λI −Aδ)−(m+1) =
∞∑

k=m

k(k − 1)...(k −m + 1)λk−mA−k−1
δ .

Hence,

‖(λI −Aδ)−(m+1)‖ ≤ 1
δ

∞∑
k=0

(k + m)(k + m− 1)...(k + 1)
m! |λ|k

= 1
δ(1 − |λ|)m+1 .

If such λ ∈ Λn,ε(Aδ), then

1
ε2n ≤ ‖(λI −Aδ)−2n‖ ≤ 1

δ(1 − |λ|)2n .

In that case, we have, δ(1 − |λ|)2n ≤ ε2
n , i.e., 1 − ε

δ1/2n ≤ |λ|. So, for any n,

{z ∈ C : 1 − ε ≤ |z| ≤ 1 + ε} = σ(Aδ) + D(0, ε) ⊆ Λn,ε(Aδ) ⊆ {z ∈ C : 1 − ε

δ1/2n ≤ |z| ≤ 1 + ε}. (5)

Thus

dH(Λn,ε(Aδ), σ(Aδ) + D(0, ε)) ≤ ε

δ1/2n − ε → 0

as n → ∞. This illustrates the result 3 in Theorem 2.8.
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Taking ε = 0.025, δ = 0.005 and n = 1, we get from Equation (5),

{z ∈ C : 0.975 ≤ |z| ≤ 1.025} ⊆ Λ1,ε(Aδ) ⊆ {z ∈ C : 0.6464 ≤ |z| ≤ 1.025}.

This may be compared with Fig 4(c) of [11]. Again, taking n = 2, we get

{z ∈ C : 0.975 ≤ |z| ≤ 1.025} ≤ Λn,ε(Aδ) ⊆ {z ∈ C : 0.9060 ≤ |z| ≤ 1.025}.

This can be compared with Fig. 4(d) of [11].

Remark 3.6. In the above example, we have shown that dH(Λn,ε(Aδ), Λn,ε(A0)) → 0 as δ → 0, that is, as 
Aδ → A0 and dH(Λn,ε(Aδ), Λn,ε(A1)) → 0 as δ → 1, that is, as Aδ → A1. This raises a natural question: 
given a sequence {ak} of elements in a Banach algebra A converging to an element a ∈ A and ε > 0, when 
can we conclude that dH(Λn,ε(ak), Λn,ε(a)) → 0? This is equivalent to asking whether the map a �→ Λn,ε(a)
is continuous. This will be investigated in detail in future. However, the continuity of the above map is 
known for bounded operators on a Banach space X when either X or X ′ is complex uniformly convex (e.g., 
Hilbert spaces, Lp spaces with 1 ≤ p ≤ ∞) (see [2], [21] and the references cited there).
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