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Abstract. We derive estimates for approximation numbers of bounded linear
operators between normed linear spaces. As special cases of our general results,

approximation numbers of some weighted shift operators on `p and those of

isometries and projections of norm 1 are found. In the case of finite rank
operators, we obtain estimates for the smallest nonzero approximation number

in terms of their generalized inverses. Also proved are some results regarding
the relation between approximation numbers and the closedness of the range of

an operator. It may be recalled that the closedness of the range is a necessary

condition for the boundedness of a generalized inverse. Examples are given to
illustrate the results, and also to show that certain inequalities need not hold.

1. Introduction

Let X and Y be normed linear spaces and BL(X,Y ) be the class of all bounded
linear operators from X to Y . We use the notations BL(X) for BL(X,X) and X ′

for BL(X,C). We shall denote the set of all finite rank operators F ∈ BL(X,Y )
with rank(F ) < k by Fk(X,Y ) and use the notation Fk(X) for Fk(X,X). Also we
denote by `p(n) the space Cn with the norm

‖ · ‖p, 1 ≤ p ≤ ∞. We shall also use the notation δij =

{
1, i = j,
0, i 6= j.

for i, j ∈ N,

and for T ∈ BL(X,Y ), the range of T is denoted by R(T ).

The concept of approximation numbers of operators in BL(X,Y ) is a generaliza-
tion of the concept of singular values of compact operators between Hilbert spaces.
For T ∈ BL(X,Y ) and k ∈ N, the kth approximation number sk(T ) of T is
defined as

sk(T ) := inf{‖T − F‖ : F ∈ Fk(X,Y )}.

It is clear that ‖T‖ = s1(T ) ≥ s2(T ) ≥ . . . ≥ 0 and if T is of finite rank, then
sk(T ) = 0 for all k > rank(T ).

Some studies on approximation numbers and their properties can be found in
[14]. Approximation numbers play an important role in the geometry of Banach
spaces as they are used in defining certain subclasses(ideals) of operator spaces
([15]). The convergence properties of approximation numbers are found useful in
estimating the error while solving operator equations ([17]).
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Computation of approximation numbers is a very difficult task, even in the case
of operators between finite dimensional spaces. There have been very few attempts
in literature to estimate the approximation numbers of bounded linear operators
between normed linear spaces. For example, [7] and [14] contain methods of com-
puting approximation numbers of diagonal operators in BL(`q, `p), 1 ≤ p ≤ q ≤ ∞,
with non-increasing positive diagonal entries, diagonal operators between some fi-
nite dimensional spaces and embedding maps in BL(`p, `q), 1 ≤ p ≤ q ≤ ∞. In [9]
and [10], some estimates were given for approximation numbers of certain classes
of integral operators.

The purpose of this article is to give some estimates for approximation numbers
of bounded linear operators between normed linear spaces. Since, for a given T ∈
BL(X,Y ) and k ∈ N, sk(T ) ≤ ‖T − F‖ for each operator F ∈ Fk(X,Y ), finding
lower estimates of approximation numbers is of importance. We give some results in
this regard in Section 2. Approximation numbers of isometries, projections of norm
1, and that of some weighted shift operators in BL(`p), 1 ≤ p ≤ ∞, are specified in
this section. For finite rank operators in BL(X,Y ), we give an estimate for the least
nonzero approximation number in terms of generalized inverses of the operator, and
as a special case, we show that it coincides with the reciprocal of the norm of the
Moore-Penrose inverse of the operator when X and Y are Hilbert spaces. This
special case is a known result.

Let X,Y be Hilbert spaces, T ∈ BL(X,Y ), and let T ∗ ∈ BL(Y,X) be the adjoint
operator of T . In [8], it was shown that the closedness of R(T ), the range of T ,
can be characterized using the spectrum of T ∗T . A question of interest is whether
it is possible to study the closedness of R(T ) using {sk(T )}, when X and Y are
general normed linear spaces. It is relevant to note here that if T has a bounded
generalized inverse, then R(T ) is closed and when X,Y are Hilbert spaces, then T †

is bounded if and only if R(T ) is closed [1]. In Section 3, we prove some results
regarding the relation between {sk(T )} and closedness of R(T ) for T ∈ BL(X,Y ).
We also give counter examples to show the inefficiency of approximation numbers
in characterizing the closedness of R(T ).

2. Some estimates for approximation numbers

The following elementary proposition is useful to identify approximation numbers
of some operators.

Proposition 2.1. Let X,X1, Y, Y1 be normed linear spaces and T ∈ BL(X,Y ).
Let U ∈ BL(Y, Y1) and V ∈ BL(X1, X) be surjective isometries. Then

sk(UTV ) = sk(T ) for all k ∈ N.

Proof. Let k ∈ N. Then

sk(UTV ) ≤ ‖U‖sk(T )‖V ‖ = sk(T ).

Also

sk(T ) = sk(U−1UTV V −1) ≤ ‖U−1‖sk(UTV )‖V −1‖ = sk(UTV ).

Hence sk(UTV ) = sk(T ) for all k ∈ N. �
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Example 2.2. Let 1 ≤ p ≤ ∞ and D ∈ BL(`p(n)) be the diagonal operator
defined by

D(x1, x2, . . . , xn) = (α1x1, α2x2, . . . , αnxn), (x1, x2, . . . , xn) ∈ `p(n),

where α1, α2, . . . , αn are real numbers satisfying α1 ≥ α2 ≥ . . . ≥ αn ≥ 0. Then it
is known that sk(D) = αk for all k ∈ {1, 2, . . . , n} (See [15]).

Now, suppose that (a1, a2, . . . , an) is a rearrangement of (α1, α2, . . . , αn) and
A ∈ BL(`p(n)) is defined by

A(x1, x2, . . . , xn) = (a1x1, a2x2, . . . , anxn), (x1, x2, . . . , xn) ∈ `p(n).

Since A = UDV for appropriate isometries U and V , by Proposition 2.1 we have
sk(A) = αk for k = 1, . . . , n. Also, if B ∈ BL(`p(n)) is defined by

B(x1, x2, . . . , xn) = (α1x2, α2x3, . . . , αn−1xn, αnx1), (x1, x2, . . . , xn) ∈ `p(n),

then sk(B) = αk for k = 1, . . . , n. To see this, first we observe that B = UC, where
C is the diagonal operator defined by

C(x1, x2, . . . , xn) = (αnx1, α1x2, . . . , αn−1xn), (x1, x2, . . . , xn) ∈ `p(n),

and U is the surjective isometry on Cn defined by

U(x1, x2, . . . , xn) = (x2, x3, . . . , xn, x1), (x1, x2, . . . , xn) ∈ `p(n).

Now, by Proposition 2.1, taking V = I, sk(B) = sk(UC) = sk(C) and since
(αn, α1, . . . , αn−1) is a rearrangement of (α1, α2, . . . , αn), sk(C) = sk(D) = αk.
Since B is a compact operator, we also have sk(B′) = αk (cf. [7]), where B′ ∈
BL(`p) is the operator defined by

B′(x1, x2, . . . , xn) = (αnxn, α1x1, . . . , αn−1xn−1), (x1, x2, . . . , xn) ∈ `p.

In literature, very little is known about approximation numbers of general bounded
linear operators, though approximation numbers of compact operators on Hilbert
spaces (known as singular values), approximation numbers of diagonal operators in
BL(`p, `q) for 1 ≤ q ≤ p ≤ ∞ are known ([7, 14]). Also, some estimates are given
for approximation numbers of certain classes of integral operators in [9] and [10].

Applicability of Proposition 2.1 is very limited since there may not be many
isometries with the help of which one can transform a given operator in to a simpler
form whose approximation numbers are known. For example, even for an operator
T ∈ BL(`p(n)) with p 6= 2, the class of operators T for which there exist a diagonal
operator B and surjective isometries U, V such that T = UBV is not very large.
In fact, for n = 2 and p 6= 2, the operators for which this is possible are operators

having matrix representations

[
α 0
0 β

]
or

[
0 α
β 0

]
, with respect to the standard

basis of Cn ([2]). Note that both these cases are already covered in Example 2.2.

Let T ∈ BL(X,Y ) and for each n ∈ N, let Pn ∈ BL(X) and Qn ∈ BL(Y ) be
projections with rank(Pn) = rank(Qn) = n and ‖Pn‖‖Qn‖ = 1. Let Tn := QnTPn,
n ∈ N. We have proved in [5] (See Theorem 3.3 in [5]) that if X is separable, Y
is the dual space of a separable normed linear space and if Tnx → Tx as n → ∞
for each x ∈ X in the weak* sense of convergence, then lim

n→∞
sk(Tn) = sk(T ). In
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applications, the projections Pn and Qn may be of finite rank, and one may know
approximation numbers of the operators

T̃n := Tn |R(Pn): R(Pn)→ R(Qn).

So, a natural question is whether sk(Tn) = sk(T̃n) for n, k ∈ N. We answer this
question affirmatively, as a consequence of the following two propositions.

Proposition 2.3. Let T ∈ BL(X,Y ), X0 be a nonzero subspace of X, Y0 be a
nonzero subspace of Y such that R(T ) ⊆ Y0, T0 := T |X0 : X0 → Y and T1 := T :
X → Y0. Then

sk(T0) ≤ sk(T ) ≤ sk(T1).

Proof. Let I0 : X0 → X and I1 : Y0 → Y be the inclusion operators. Then T0 = TI0
and T = I1T1 and hence

sk(T0) = sk(TI0) ≤ sk(T )‖I0‖ = sk(T ),

sk(T ) = sk(I1T1) ≤ ‖I1‖sk(T1) = sk(T1).

�

In the next proposition, we use the notation T̂ to represent an operator T ∈
BL(X,Y ), considered as from X to R(T ), that is, T̂ := T : X → R(T ) defined by

T̂ x = Tx, x ∈ X.

Proposition 2.4. Let T ∈ BL(X,Y ), and let P ∈ BL(X) and Q ∈ BL(Y ) be
nonzero projections. Then we have the following.

(a) 1
‖P‖sk(TP ) ≤ sk(TP |R(P )) ≤ sk(TP ).

(b) sk(QT ) ≤ sk(Q̂T ) ≤ ‖Q‖sk(QT ).

(c) 1
‖P‖sk(QTP ) ≤ sk(Q̂TP |R(P )) ≤ ‖Q‖sk(QTP ).

In particular, if ‖P‖ = 1 = ‖Q‖, then

sk(QTP ) = sk(Q̂TP |R(P )).

Proof. (a). We have

sk(TP ) = sk(TP |R(P ) P ) ≤ ‖P‖sk(TP |R(P ))

and from Proposition 2.3, sk(TP |R(P )) ≤ sk(TP ).

(b). The inequality sk(QT ) ≤ sk(Q̂T ) follows from Proposition 2.3. For F ∈
Fk(X,Y ), we have

‖Q̂T − Q̂F‖ = ‖QT −QF‖ ≤ ‖Q‖‖QT − F‖.

Hence sk(Q̂T ) ≤ ‖Q‖‖QT − F‖. Taking infimum over F ∈ Fk(X,Y ), we get

sk(Q̂T ) ≤ ‖Q‖sk(QT ).

(c). Taking TP |R(P ) in place of T in (b) and using (a), we get

sk(QTP |R(P )) ≤ sk(Q̂TP |R(P ))

≤ ‖Q‖sk(QTP |R(P ))

≤ ‖Q‖sk(QTP ).
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Also by taking QT in place of T in (a), 1
‖P‖sk(QTP ) ≤ sk(QTP |R(P )). Hence

1

‖P‖
sk(QTP ) ≤ sk(Q̂TP |R(P )) ≤ ‖Q‖sk(QTP ).

The particular case is obvious from (c). �

The particular case in Proposition 2.4 together with Theorem 3.3 in [5] lead to
the following.

Corollary 2.5. Let X be separable, Y be the dual space of a separable space and
T ∈ BL(X,Y ). Let {Pn} and {Qn} be sequences of projection operators in BL(X)
and BL(Y ), respectively, such that ‖Pn‖ = 1 = ‖Qn‖, n ∈ N. Let

Tn := QnTPn and T̃n := Tn |R(Pn): R(Pn)→ R(Qn), n ∈ N.

If Tnx → Tx as n → ∞ for each x ∈ X in the weak* sense of convergence, then
for each k ∈ N,

lim
n→∞

sk(T̃n) = sk(T ).

The above corollary helps us in identifying the approximation numbers of cer-
tain weighted shift operators on `p, 1 ≤ p ≤ ∞, as illustrated in the following
proposition.

Proposition 2.6. Let 1 ≤ p ≤ ∞ and let {αn} be a sequence of real numbers such
that αi ≥ αi+1 ≥ 0 for every i ∈ N. Let A ∈ BL(`p) be the operator defined by

Ax = (α1x2, α2x3, . . .), x = (x1, x2, . . .) ∈ `p.

Then sk(A) = αk for every k ∈ N.

Proof. For n ∈ N, let Pn ∈ BL(`p) be the projection operator defined by

Pnx = (x1, x2, . . . , xn, 0, 0, . . .), x = (x1, x2, . . .) ∈ `p,

and let An := PnAPn and Ãn := An |R(Pn): R(Pn) → R(Pn). Since An → A
as n → ∞ in the weak* operator topology (considering `p as a dual space), by

Corollary 2.5, we have sk(Ãn)→ sk(A) as n→∞. Now the operator Ãn : `p(n)→
`p(n), defined by

Ãnx = (α1x2, α2x3, . . . , αn−1xn, 0), x = (x1, x2, . . . , xn) ∈ `p(n)

can be obtained from the diagonal operator B ∈ BL(`p(n)), defined by

Bx = (α1x1, α2x2, . . . , αn−1xn−1, 0), x = (x1, x2, . . . , xn) ∈ `p(n),

by composing with suitable isometries. Since approximation numbers of an operator
do not change if the operator is composed with surjective isometries, we have

sk(Ãn) = sk(B) = αk for all k = 1, 2, . . . , n− 1.

Hence

sk(A) = lim
n→∞

sk(Ãn) = αk ∀k ∈ N

�
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Remark 2.7. Let 1 ≤ p ≤ ∞ and {αn} be as in Proposition 2.6. Let T, S ∈ BL(`p)
be defined by

Tx = (α1x1, α2x2, . . .), x = (x1, x2, . . .) ∈ `p,

Sx = (0, α1x1, α2x2, . . .), x = (x1, x2, . . .) ∈ `p

respectively. Using similar arguments as in Proposition 2.6, it can be shown that

sk(T ) = αk = sk(S) ∀k ∈ N.

Remark 2.8. It can be seen that sk(A) in Proposition 2.6 can also be found from
the known values of sk(T )(See [14]) by using the inequalities

sk(T ) = sk(TV−V+) ≤ sk(TV−) ≤ sk(T ),

where V− and V+ are the left and right shift operators on `p, and A = TV−. But
we give Proposition 2.6 as an application of Corollary 2.5.

The following theorem helps in finding lower bounds for approximation numbers
in certain cases.

Theorem 2.9. Let T ∈ BL(X,Y ) and M be a subspace of X. Suppose there exists
α > 0 such that

‖Tx‖ ≥ α‖x‖ ∀x ∈M.

Then

sk(T ) ≥ α ∀ k ≤ dim(M).

In particular, if M is infinite dimensional, then

sk(T ) ≥ α ∀ k ∈ N.

Proof. Suppose k ∈ N with k ≤ dim(M), and F ∈ Fk(X,Y ). Then, it follows that
N(F |M ) 6= {0}, so that there exists x ∈M with ‖x‖ = 1 and F (x) = 0. Therefore,

α ≤ ‖Tx‖ = ‖Tx− Fx‖ ≤ ‖T − F‖
This is true for all F ∈ Fk(X,Y ). Hence α ≤ sk(T ). �

Remark 2.10. Suppose there exists an α > 0 and k ∈ N such that sk(T ) ≥ α.
One may ask whether there exists a subspace M of X such that dim(M) ≥ k and
‖Tx‖ ≥ α‖x‖ for all x ∈ M . The answer is negative. To see this, consider the
inclusion operator I : `2 → `∞. Then sk(I) = 1 for all k ∈ N ([7]). Now assume
that there exists a subspace M of `2 such that dim(M) ≥ 2 and ‖Ix‖∞ ≥ 1 ‖x‖2
for all x ∈ M . Since ‖x‖∞ ≤ ‖x‖2 for all x ∈ `2, it follows that ‖x‖∞ = ‖x‖2 for
all x ∈ M . This implies that for each x ∈ M , there exists β ∈ C and j ∈ N such
that x = βej , where ej = (δjn), j ∈ N. This j is independent of x. To see this,
suppose x, y ∈ M given by x = β1ej1 and y = β2ej2 for some nonzero β1, β2 ∈ C
and j1, j2 ∈ N. Then, since x+y ∈M , we get ej1 = ej2 so that dim(M) = 1, which
is a contradiction to our assumption that dim(M) ≥ 2. Thus it is impossible to
have the relation ‖x‖∞ ≥ ‖x‖2 for all x ∈M , if dim(M) ≥ 2.

Corollary 2.11. Let T ∈ BL(X,Y ) be bounded below. Then T−1 : R(T ) → X is
continuous and

sk(T ) ≥ 1

‖T−1‖
∀ k ≤ rank(T ).

In particular, if T is an isometry, then sk(T ) = 1 for all k ≤ rank(T ).
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Proof. Since T is bounded below, T is injective, rank(T ) = dim(X) and T−1 :
R(T )→ X is continuous. In particular,

‖x‖ = ‖T−1(Tx)‖ ≤ ‖T−1‖ ‖Tx‖ ∀x ∈ X.
Hence, by Theorem 2.9, we have sk(T ) ≥ 1

‖T−1‖ for all k ≤ dim(X). The particular

case is obvious. �

Remark 2.12. By Corollary 2.11, we can infer that if X is infinite dimensional
and T ∈ BL(X,Y ) is bounded below, then sk(T ) ≥ 1

‖T−1‖ for all k ∈ N, and if

T ∈ BL(X,Y ) is an isometry, then sk(T ) = 1 for all k ∈ N.

Now we use Theorem 2.9 for showing approximation numbers of projections of
norm 1 are either 1 or 0.

Corollary 2.13. If P ∈ BL(X) is a nonzero projection, then

1 ≤ sk(P ) ≤ ‖P‖ ∀ k ≤ rank(P )

and sk(P ) = 0 for every k > rank(P ). In particular, if ‖P‖ = 1, then

sk(P ) =

{
1, k ≤ rank(P ),
0, k > rank(P ).

Proof. Since Px = x for all x ∈ R(P ), Theorem 2.9 with M = R(P ) implies that
sk(P ) ≥ 1 for k ≤ rank(P ). Thus,

1 ≤ sk(P ) ≤ ‖P‖ ∀ k ≤ rank(P ).

The particular case is obvious. �

Let αi ∈ R be such that αi ≥ αi+1 ≥ 0 for all i ∈ N. Let D ∈ BL(`p), 1 ≤ p ≤ ∞
be the diagonal operator defined by

D(x1, x2, . . .) = (α1x1, α2x2, . . .), (x1, x2, . . .) ∈ `p.
We have seen in [14] that sk(D) = αk for all k ∈ N. We prove a generalization of
this result as a Corollary to Theorem 2.9, where {αn} is assumed to be a sequence
of complex numbers.

Corollary 2.14. Let D ∈ BL(`p), 1 ≤ p ≤ ∞, be the diagonal operator defined by

Dx = (α1x1, α2x2, . . .), x = (x1, x2, . . .) ∈ `p,
where αn ∈ C satisfy |αn| ≥ |αn+1|, n ∈ N. Then

sk(D) = |αk| ∀ k ∈ N.

Proof. Let k ∈ N and M = span{e1, e2, . . . , ek}, where ei = (δin) with δin, i ∈ N.
Then ‖Dx‖ ≥ |αk|‖x‖ for all x ∈M . Hence, by Theorem 2.9, sk(D) ≥ |αk|. Taking
Pk−1 ∈ BL(`p) as

Pk−1x = (x1, x2, . . . , xk−1, 0, 0, . . .), x = (x1, x2, . . .) ∈ `p,
we have

sk(D) ≤ ‖D − Pk−1D‖ = |αk|.
Thus sk(D) = |αk| for all k ∈ N. �

The next corollary gives a relation between certain approximation numbers and
norms of certain generalized inverses. We refer to [1] for theory and applications of
generalized inverses. In particular, recall that for T ∈ BL(X,Y ), S ∈ BL(Y,X) is
called a {1}- inverse of T if TST = T .
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Corollary 2.15. Let T ∈ BL(X,Y ) be such that there exists S ∈ BL(Y,X) satis-
fying TST = T . Then

sk(T ) ≥ 1

‖S‖
∀ k ≤ rank(T ).

In particular, if X and Y are Hilbert spaces and T has closed range, then

sk(T ) ≥ 1

‖T †‖
∀ k ≤ rank(T ),

where T † is the Moore-Penrose generalized inverse of T .

Proof. Since TST = T , ST is a projection and rank(ST ) = rank(T ). Therefore,
by Corollary 2.13,

1 ≤ sk(ST ) ≤ sk(T )‖S‖ ∀ k ≤ rank(T ).

The particular case follows by noticing that TT †T = T , whenever R(T ) is closed.
�

Remark 2.16. We may observe that Corollary 2.11 is a particular case of Corollary
2.15 .

Corollary 2.17. Let T ∈ BL(X) and λ be an eigenvalue of T . Then

sk(T ) ≥ |λ| ∀ k ≤ dim(N(λI − T )).

In particular, if dim(N(λI − T )) =∞, then

sk(T ) ≥ |λ| ∀ k ∈ N.

Proof. Let Mλ := N(λI − T ), and k ∈ N be such that dim(Mλ) ≥ k. Then
‖Tx‖ = |λ|‖x‖ for all x ∈Mλ and hence by Theorem 2.9, sk(T ) ≥ |λ|. �

Example 2.18. Let (αn) be a bounded sequence in C and β ∈ C. Let D ∈
BL(`p), 1 ≤ p ≤ ∞, be defined by

Dx = (βx1, α1x2, βx3, α2x4, . . .), x = (x1, x2, . . .) ∈ `p.

Then β is an eigenvalue of infinite geometric multiplicity so that by Corollary 2.17,
sk(D) ≥ |β|. If, in addition, |αn| ≤ |β| for all n ∈ N, then we have sk(D) ≤ ‖D‖ =
|β| so that, in this case, sk(D) = |β| for all k ∈ N.

If T ∈ BL(X,Y ) and M is a subspace of X, then we define

νM (T ) := inf{‖Tx‖ : x ∈M, ‖x‖ = 1}.

Also, we shall denote by Mk(X) the set of all subspaces M of X such that
dim(M) ≥ k. Then the quantity

sup
M∈Mk(X)

νM (T )

coincides with uk(T ), the kth Bernstein Number of T (See [15]). It is clear from
Theorem 2.9 that

(2.1) sk(T ) ≥ sup
M∈Mk(X)

νM (T ) = uk(T ).
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Remark 2.19. Let X and Y be Hilbert spaces and T ∈ BL(X,Y ) be compact.
Then we have sk(T ) = νM (T ) for some subspace M of X of dimension k ([18], page
165). Hence in this case, if sk(T ) ≥ α for some α > 0, then there exists a subspace
M of X such that dim(M) = k and ‖Tx‖ ≥ α‖x‖ for all x ∈ M . Hence in this
special case, we have a positive answer to the question asked in Remark 2.10.

Now we show that the inequality in (2.1) can be strict for some operator. We first
prove a lemma in this regard by modifying the arguments in the proof of Lemma
11.11.4 in [14]. In the following, cardK denotes the cardinality of a set K.

Lemma 2.20. Let M be a subspace of `p, 1 ≤ p < ∞, such that dim(M) ≥ n.
Then there exists e ∈M such that ‖e‖∞ = 1 and card{k : |e(k)| = 1} ≥ n.

Proof. Let 1 ≤ p < ∞. Since M ⊂ `p ⊂ `∞ is a finite dimensional subspace, the
closed unit ball UM of M (with respect to ‖ · ‖∞) is compact and convex in M .
Hence by the Krein-Milman Theorem ([18]), there exists an extreme point e. Now
since e ∈ `p also, ‖e‖∞ = 1 = |e(k0)| for some k0 ∈ N.

Let K := {k : |e(k)| = 1}. Assume that card{K} < n. Then, since e ∈ `p, the
number α := sup{|e(k)| : k /∈ K} < 1. Now let

N = {x ∈M : x(k) = 0 for all k ∈ K}.
Then N is a nontrivial subspace of M . Let u 6= 0 be an element of UN and δ := 1−α.
We claim that e ± δu ∈ UM . To see this, note that |e(k) ± δu(k)| = 1 for k ∈ K
and |e(k)± δu(k)| ≤ α+ δ = 1 for k /∈ K. Hence

‖e± δu‖∞ = max{|e(k)± δu(k)| : k ∈ N} ≤ 1.

Thus e ± δu ∈ UM . But then e can not be an extreme point of UM , and the
assumption card{K} < n can not be true. Thus card{k : |e(k)| = 1} ≥ n. �

The following example shows that the inequality in 2.1 is strict for the inclusion
operator I : `2 → `∞.

Example 2.21. Let I : `2 → `∞ be the natural injection. Then νM (I) ≤ 1√
2

for all

M ∈M2(`2), and hence s2(I) 6= sup
M∈M2(`2)

νM (I). To see this, note that, by Lemma

2.20, any subspace of `2 of dimension 2 contains an element e with ‖e‖∞ = 1 and

card{k : |e(k)| = 1} ≥ 2. Hence ‖e‖2 ≥
√

2. Then the element u := e
‖e‖2 satisfies

‖u‖2 = 1 and ‖Iu‖∞ ≤ 1√
2
. Therefore, νM (I) ≤ 1√

2
for all M ∈ M2(`2), whereas

s2(I) = 1 ([7]).

It has been proved in [2] (See Proposition 9.2 in [2]) that if X is a finite dimen-
sional space, say with dim(X) = n, then for T ∈ BL(X),

sn(T ) =


1

‖T−1‖
if T is invertible

0 if T is not invertible.

This is a particular case of the following general result for any finite rank operator.

Theorem 2.22. Let T ∈ BL(X,Y ) be a finite rank operator, say rank(T ) = n,
and let S ∈ BL(R(T ), X) satisfy TST = T . Then

1

‖S‖
≤ sn(T ) ≤ ‖ST‖

‖S‖
.
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In particular, if X and Y are Hilbert spaces, then sn(T ) = 1
‖T †‖ , where T † is the

Moore-Penrose inverse of T .

Proof. By Corollary 2.15, we have sn(T ) ≥ 1
‖S‖ .

Now since R(T ) is finite dimensional, there exists y ∈ R(T ) such that ‖y‖ = 1
and ‖Sy‖ = ‖S‖. By the Hahn Banach theorem, there exists f ∈ X ′ such that
‖f‖ = 1 and f(Sy) = ‖Sy‖ = ‖S‖. Define P : X → Y by

Pu =
1

‖S‖
f(STu)y, u ∈ X.

Then ‖P‖ ≤ ‖ST‖
‖S‖ . Let F = T − P . Note that Fu = 0 for all u ∈ N(T ). Hence

N(T ) ⊆ N(F ). Since TSy = y, we have

F (Sy) = TSy − 1

‖S‖
f(STSy)y = 0.

Thus Sy ∈ N(F ) but TSy = y 6= 0. Hence, N(F ) ) N(T ). Thus, rank(F ) ≤ n− 1
so that

sn(T ) ≤ ‖T − F‖ = ‖P‖ ≤ ‖ST‖
‖S‖

.

If X and Y are Hilbert spaces, then we can take S = T †, and in that case
T †T is an orthogonal projection onto N(T )⊥. Thus we obtain ‖ST‖ = 1, and
consequently, sn(T ) = 1/‖T †‖. �

For T ∈ BL(X,Y ) and k ∈ N, we have sk(T ) = dist(T,Fk(X,Y )). A question
of interest is whether one can replace the set Fk(X,Y ) by a smaller collection. In
this regard we have the following proposition proved in [4] (Also see [14]).

Theorem 2.23. ([4], pages 67, 71) Let X and Y be Banach spaces, T ∈ BL(X,Y )
and k ∈ N. Then we have the following.

(i) If X is a Hilbert space, then

sk(T ) = inf{‖T − TP‖ : P ∈ Fk(X) is an orthogonal projection}.

(ii) If Y is a Hilbert space, then

sk(T ) = inf{‖T − PT‖ : P ∈ Fk(Y ) is an orthogonal projection}.

In view of Theorem 2.23, and also to obtain further estimates for sk(T ), we
introduce a few more quantities.

Definition 2.24. For T ∈ BL(X,Y ) and k ∈ N, we define

γk(T ) := inf{‖T − PT‖ : P ∈ Fk(Y ) is a projection}.

Also, for a finite dimensional subspace M of X, we define

η(M,X) := inf{‖I − P‖ : P ∈ BL(X) is a projection with R(P ) = M},

and for n ∈ N, we define

η̂n(X) := sup{η(M,X) : M subspace of X with dim(M) = n}.
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Note that {γk(T )} is a nonincreasing sequence and sk(T ) ≤ γk(T ) for all k ∈ N.

Clearly, if X is a Hilbert space, then η̂k(X) = 1 for all k ∈ N. For a general
normed linear space X, it is known ([14], Page 386) that if η̌k(X) is the quantity
defined by

η̌k(X) := sup
M∈N̂k(X)

inf{‖P‖ : P is a projection on X with R(P ) = M},

then η̌k(X) ≤
√
k so that

η̂k(X) ≤ 1 + η̌k(X) ≤ 1 +
√
k.

For a real Banach space X, it was shown in [11] that

η̌k(X) ≤ 2 + (k − 1)
√
k + 2

k + 1
≤
√
k.

This leads to an improved estimate for η̂k(X), for a real Banach space X, namely,

η̂k(X) ≤ 1 +
2 + (k − 1)

√
k + 2

k + 1
≤ 1 +

√
k.

In terms of η̂k, we give a general relation between sk(T ) and γk(T ) in the following.

Proposition 2.25. Let T ∈ BL(X,Y ) and k ∈ N. Then

sk(T ) ≤ γk(T ) ≤ η̂k−1(Y )sk(T ) ∀ k ∈ N.

Proof. Clearly sk(T ) ≤ γk(T ) for all k ∈ N. Now let ε > 0 be given. Let F ∈
Fk(X,Y ) be such that ‖T − F‖ ≤ sk(T ) + ε. Then there exists a projection
P ∈ BL(Y ) with R(P ) = R(F ) and ‖I − P‖ ≤ η̂k−1(Y ). Hence

‖T − PT‖ = ‖(I − P )T‖ ≤ ‖(I − P )(T − F )‖
≤ ‖I − P‖ ‖T − F‖
≤ η̂k−1(Y )(sk(T ) + ε).

Thus sk(T ) ≤ γk(T ) ≤ η̂k−1(Y )sk(T ). �

Remark 2.26. Since for a Hilbert space X, η̂k(X) = 1 for all k ∈ N, we get
Theorem 2.23(ii) as a corollary to Proposition 2.25.

Remark 2.27. Let X and Y be Banach spaces and T ∈ BL(X,Y ). We may recall
that the essential norm of T , denoted by ‖T‖ess, is defined by

‖T‖ess := inf{‖T −K‖ : K ∈ BL(X,Y ) is compact}.

Since ‖T‖ = s1(T ) ≥ s2(T ) ≥ . . . ≥ ‖T‖ess, it follows that for those operators T
for which ‖T‖ = ‖T‖ess, we have

sk(T ) = ‖T‖ ∀ k ∈ N.

In particular, for Toeplitz operators inBL(`p) with 1 < p <∞, sk(T ) = ‖T‖ for all k ∈
N, as for such operators we have ‖T‖ = ‖T‖ess ([2, 3]). Of course, there are op-
erators other than Toeplitz operators which satisfy ‖T‖ = ‖T‖ess. For example,
consider X = C[a, b] with ‖ · ‖∞ and A : X → X defined by

(Ax)(t) = tx(t), t ∈ [a, b].

Then it can be seen that ‖A‖ = ‖A‖ess.
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We also infer that if T ∈ BL(X,Y ) satisfies ‖T‖ = ‖T‖ess and if X is separable,

Y is a dual space of some separable normed linear space and {Tn} and {T̃n} are as

in Corollary 2.5, then lim
n→∞

sk(T̃n) = lim
n→∞

sk(Tn) = sk(T ) = ‖T‖.

Now, let X be a Banach space and for k ∈ N, let

Ak := {A ∈ BL(X) : A+ F is not invertible for any F ∈ Fk(X)}.
In the following, we give estimates for approximation numbers of operators of the
form λI −A for A ∈ Ak.

Proposition 2.28. Let X be a Banach space, λ ∈ C and A ∈ Ak for some k ∈ N.
Then

sk(λI −A) ≥ |λ|.
In particular, if A ∈ ∩∞k=1Ak and λ ∈ C, then

sk(λI −A) ≥ |λ| ∀ k ∈ N.

Proof. Let k ∈ N, A ∈ Ak and F ∈ Fk(X). Since 0 ∈ σ(A+ F ), for any λ ∈ C, we
have (See [12], Theorem 10.10(i))

‖(λI −A)− F‖ ≥ rσ(λI −A− F ) ≥ |λ|.
Thus sk(λI −A) ≥ |λ|. The remaining part of the theorem is obvious. �

Let X and Y be Banach spaces and T ∈ BL(X,Y ). We recall that T is said
to be a Fredholm operator if R(T ) is closed and dim(N(T )) and codim(R(T )) are
finite, and in that case, the index of T is defined as the number

ind(T ) := dim(N(T ))− codim(R(T )).

We may recall that an operator T ∈ BL(X,Y ) is a Fredholm operator of index
zero if and only if there exists a finite rank operator F such that T +F is invertible
([6], page 191). Hence, it follows that

T ∈ BL(X) is a Fredholm operator of index zero if and only if there
exists k ∈ N such that T 6∈ Ak.

Thus, as a consequence of Proposition 2.28, if T ∈ BL(X) is not a Fredholm
operator of index zero, then for every λ ∈ C,

sk(λI − T ) ≥ |λ| ∀ k ∈ N.

3. Closed range operators and approximation numbers

Let X and Y be Hilbert spaces and T ∈ BL(X,Y ). If the operator T is compact,
then the set of all nonzero singular values of T coincides with the set of square roots
of nonzero elements of σ(T ∗T ). It was shown in [8] that

R(T ) is closed if and only if 0 is not an accumulation point of
σ(T ∗T ).

A question of interest is whether it is possible to study the closedness of R(T ) using
approximation numbers of T when X and Y are not necessarily Hilbert spaces.
Again it is worthwhile recalling here that the closedness of range is connected with
boundedness of a generalized inverse. It is known that if X,Y are Banach spaces
and T ∈ BL(X,Y ) has a bounded {1}- inverse, then R(T ) is closed. Also if X,Y
are Hilbert spaces, then the Moore-Penrose inverse T † is bounded if and only if
R(T ) is closed.
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SupposeX and Y are Banach spaces and T ∈ BL(X,Y ) is such that lim
k→∞

sk(T ) =

0. Then we know that T is a compact operator, and in that case R(T ) is not closed
whenever T is of infinite rank.

But the converse need not be true. That is, if T has non-closed range, then it
is not necessary that lim

k→∞
sk(T ) = 0. To see this, consider the diagonal operator

D ∈ BL(`2) defined by

Dx = (2x1,
1

2
x2, 2x3,

1

3
x4, 2x5, . . .), x = (x1, x2, x3, . . .) ∈ `2.

In this case, R(D) is not closed since 0 is an accumulation point of the spectrum
of D∗D (cf. [8]). We observe that sk(D) = 2 for all k ∈ N (taking β = 2 and
αn = 1

n , n ∈ N, in Example 2.18. However, we have sn(PnDPn) = 1
n for all n ≥ 2,

so that sn(PnDPn) → 0 as n → ∞, where {Pn} is the sequence of projection
operators in BL(`2) defined by

Pnx = (x1, x2, . . . , xn, 0, 0, . . .), x = (x1, x2, . . .) ∈ `2.

In fact, the above result is true in a more general setting.

Proposition 3.1. Let X be a Banach space, T ∈ BL(X) and for each n ∈ N, let
Pn ∈ Fn(X) be projections such that Pn → I pointwise. If R(T ) is not closed, then
lim
n→∞

sn(PnTPn) = 0.

Proof. For n ∈ N, let Tn := PnTPn and T̃n := Tn |R(Pn): R(Pn)→ R(Pn). Assume
that {sn(Tn)} does not converge to 0. Then there exists a d > 0 and a subsequence
{snk

(Tnk
)} of {sn(Tn)} such that snk

(Tnk
) ≥ d for all k ∈ N. Hence

snk
(T̃nk

) ≥ 1

M
snk

(Tnk
) ≥ d

M
> 0,

where M ≥ 1 is such that ‖Pn‖ ≤M for all n ∈ N (See Proposition 2.4). Then T̃nk

are invertible and snk
(T̃nk

) = 1/‖T̃−1nk
‖ for each k ∈ N. In particular, ‖T̃−1nk

‖ ≤ M
d .

Hence for x ∈ X,

‖Pnk
x‖ = ‖T̃−1nk

T̃nk
Pnk

x‖ ≤ ‖T̃−1nk
‖‖T̃nk

Pnk
x‖ ≤ M

d
‖T̃nk

Pnk
x‖

Letting k → ∞, we have ‖x‖ ≤ M

d
‖Tx‖ for all x ∈ X. Thus, T is bounded below

and hence R(T ) closed. Thus sn(Tn)→ 0 as n→∞, if R(T ) is not closed. �

The above result generalizes the last part of the following result proved in [16].

Theorem 3.2. (cf. [16]) Let T ∈ BL(`p), 1 < p < ∞, and for n ∈ N, let Pn ∈
BL(`p) be defined by

Pnx = (x1, x2, . . . , xn, 0, 0, . . .), x = (x1, x2, . . .) ∈ `p.

Let {Tn} be a sequence of operators in BL(R(Pn)) such that TnPn → T pointwise
as n→∞. If R(T ) is not closed, then for each k ∈ N,

lim
n→∞

sn−k+1(Tn) = 0.

In particular, if R(T ) is not closed, then lim
n→∞

sn(PnTPn) = 0.
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We would like to mention that the converse of Theorem 3.2 need not be true in
general, i.e., sn−k+1(Tn)→ 0 as n→∞ for all k ∈ N does not imply that R(T ) is
not closed. To see this, consider the following example.

Example 3.3. For n ∈ N, let Tn ∈ BL(`2) be defined by

Tnx = (x1, x2, . . . ,
xm
n
,
xm+1

n
, . . . ,

xn
n
, 0, 0, . . .), x = (x1, x2, . . .) ∈ `2,

where m = [n2 ], the greatest integer less than or equal to n
2 . For n ∈ N, let T̃n :=

Tn |R(Pn): R(Pn) → R(Pn), where Pn is as in Theorem 3.2. Then for each k ∈ N,

we have sn−k+1(T̃n) = 1
n for all sufficiently large n and hence sn−k+1(T̃n) → 0 as

n → ∞, whereas the pointwise limit of T̃nPn is the identity operator, which has
closed range.
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[2] Böttcher, A., On the approximation numbers of large Toeplitz matrices, Doc. Math. 2 (1997),
1–29.
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