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Aim of this short note is to obtain a formula for the gap between

twodenselydefinedunbounded closedoperators. It is interesting to

note that the formula is very similar to the corresponding formula

for the gap between two bounded operators.
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1. Introduction

Let H denote an infinite dimensional complex Hilbert space. For a closed subspace M of H denote

by PM , the orthogonal projection ontoM. The gap between closed subspacesM and N of H is given by

δ(M, N):=‖PM − PN‖. This defines a metric on the class of closed subspaces of H, known as the gap

metric. The topology induced by the gap metric is known as the gap topology.

Next, let H1, H2 be two Hilbert spaces. If A, B : H1 → H2 are bounded operators, then the gap

θ(A, B) between A and B is defined as the gap between the corresponding graphsG(A) andG(B). That is
θ(A, B):=‖PG(A) − PG(B)‖. In particular, ifB = 0, thenθ(A):=θ(A, 0) is called thegapof theoperatorA.
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For an m × n matrix A, Habibi [4] proved that θ(A) = ‖A‖√
1+‖A‖2

. A formula for computing the gap

between bounded operators A, B ∈ B(H) was deduced by Nakamoto [11], which generalizes Habibi’s

result. He proved the following:

θ(A, B) = max
{∥∥∥(I + BB∗)−1/2(A − B)(I + A∗A)−1/2

∥∥∥ ,∥∥∥(I + AA∗)−1/2(A − B)(I + B∗B)−1/2
∥∥∥}

,

and also has shown that the topology induced by the gap metric and the topology induced by the

operator norm on B(H) are the same.

Similarly if A, B are densely defined closed operators, then G(A) and G(B) are closed subspaces of

H1 × H2. Hence in this case also the gap between A and B is defined as ‖PG(A) − PG(B)‖. This defines
a metric on the class of closed operators and induces a topology also known as the gap topology. It

is well known that the gap topology restricted to the class of bounded operators, coincides with the

norm topology. Also the convergence with respect to the gapmetric on the set of self-adjoint bounded

operators coincide with the resolvent convergence [14, Chapter VII, p. 235].

In the literature the class of unbounded closed operators has not received due attention, although

many operators that arise in physical applications are unbounded. The main difficulty in dealing with

the unbounded operators is that they are usually defined on some proper subspace of a Hilbert space.

Hence many techniques of bounded operators do not work for unbounded operators.

The aim of this article is to generalize the results of Habibi [4] (see Theorem 3.2) and Nakamoto

[11] to the case of unbounded closed operators (see Theorem 3.5).

The next section contains some preliminary results. In the third section we obtain a formula for

the gap of a closed operator and generalize a theorem of Nakamoto [11, Theorem 1.1] to the class of

unbounded operators.

It is a remarkable fact to observe that this formula is essentially same as the formula for the gap

between two bounded operators. This is due to the fact that the operators that appear in the formula

(for the gap between unbounded closed operators) are bounded.

In [9], the author has defined a metric on a class of operators on a Hilbert C∗-module. This metric

is equivalent to the gap metric, but it is not the same (See Remark 3.6 for details).

2. Notations and basic results

Throughout the paper we consider complex Hilbert spaces which will be denoted by H, H1, H2,

etc. The inner product and the induced norm are denoted by 〈, 〉 and ||.||, respectively. If T : H1 → H2

is a linear operator with domain D(T) ⊆ H1, then it is denoted by T ∈ L(H1, H2). The null space and

the range space of T are denoted by N(T) and R(T), respectively.
The graph of T ∈ L(H1, H2) is defined by G(T):={(x, Tx) : x ∈ D(T)} ⊆ H1 × H2. If G(T) is closed,

then T is called a closed operator. The set of all closed operators between H1 and H2 is denoted by

C(H1, H2). By the closed graph Theorem [5, p. 281], an everywhere defined closed operator is bounded.

The set of all boundedoperators is denotedbyB(H1, H2). IfH1 = H2 = H, thenB(H1, H2) and C(H1, H2)
are denoted by B(H) and C(H), respectively.

If S and T are closed operators with the property that D(S) ⊆ D(T) and Sx = Tx for all x ∈ D(S),
then S is called the restriction of T and T is called the extension of S. If M is a closed subspace of a

Hilbert space H, thenM⊥ is the orthogonal complement of M in H.

For closed subspacesM1 andM2 of H, the direct sum and the orthogonal direct sum are denoted by

M1 ⊕ M2 andM1 ⊕⊥ M2, respectively. Throughoutwe denote that if T ∈ C(H1, H2) is densely defined,

then Ť = (I + T∗T)−1 and T̂ = (I + TT∗)−1.

Here we recall some of the known facts which will be used in the next section.

Proposition 2.1 [1, p. 70]. Let M, N be closed subspaces of a Hilbert space H. Then

δ(M, N):=||PM − PN || = max {||PM(I − PN)||, ||PN(I − PM)||} .
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Proposition 2.2 [3, pp. 70–71]. Let Hi be Hilbert spaces and Ai ∈ B(Hi), i = 1, 2. Let A =
[
A1 0
0 A2

]
.

Then A ∈ B(H1 ⊕ H2) and ||A|| = max {||A1||, ||A2||} .

Definition2.3 [15, Theorem13.31, p. 349]. Let T ∈ C(H)be apositive operator. Then there exists a unique

positive operator S such that T = S2. The operator S is called the square root of T and is denoted by

S = T
1
2 .

Proposition 2.4 [15, Theorem 13.13, p. 336]. Let T ∈ C(H1, H2) be densely defined. Then the operator

I + T∗T : D(T∗T) → H1 is bijective and Ť is bounded.

Lemma 2.5 [6,7,13]. Let A ∈ C(H1, H2) be densely defined. Then

1. Ǎ ∈ B(H1), Â ∈ B(H2).

2. ÂA ⊆ AǍ, ||AǍ|| � 1
2
and ǍA∗ ⊆ A∗Â, ||A∗Â|| � 1

2
.

Lemma 2.6 [2, Lemma 5.1]. Let A ∈ C(H1, H2) be densely defined. Then

1. Ǎ
1
2 and AǍ

1
2 are bounded.

2.
∥∥∥Ǎ 1

2

∥∥∥ � 1 and
∥∥∥AǍ 1

2

∥∥∥ � 1.

3. The gap between closed operators

Recall that ifA, B ∈ C(H1, H2), then thegapbetweenA andB is definedby θ(A, B) = ‖PG(A) − PG(B)‖,
where PM : H1 × H2 → H1 × H2 is an orthogonal projection onto the closed subspaceM of H1 × H2.

In this section first we obtain a formula for the gap of a closed operator which generalizes the result of

[4]. For this purpose we use thematrix representation of the orthogonal projection onto the graph of a

closed operator. This representation was obtained in [2]. Also see [12] and [16, pp. 72–73]. This result

for self-adjoint bounded operators was proved by Halmos using elementary geometric concepts in [8].

Theorem 3.1 [2,16]. Let A ∈ C(H1, H2) be densely defined. Let P :=PG(A). Then

P =
[
Ǎ A∗Â
AǍ I − Â

]
.

Similarly if B ∈ C(H1, H2) is densely defined and Q = PG(B), then

θ(A, B) = ‖P − Q‖ =
∥∥∥∥∥
[

Ǎ − B̌ A∗Â − B∗B̂
AǍ − BB̌ B̂ − Â

]∥∥∥∥∥ .

Theorem 3.2. Let A ∈ C(H1, H2) be densely defined. Then AǍ
1
2 is bounded and

θ(A, 0) = ||AǍ 1
2 ||.

Proof. Note that AǍ
1
2 is bounded by Lemma 2.6. Let P :=PG(A) and Q :=PG(0). Then by Proposition 2.1,

θ(A, 0) = max {||P(I − Q)||, ||Q(I − P)||} .

Now,

I − Q =
[
I 0

0 I

]
−

[
I 0

0 0

]
=

[
0 0

0 −I

]
.
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P(I − Q) =
[
Ǎ A∗Â
AǍ AA∗Â

] [
0 0

0 −I

]
=

[
0 −A∗Â
0 −AA∗Â

]
:=T (say).

Then

T∗ =
[

0 0

−ÂA −ÂAA∗
]

and T∗T =
[
0 0

0 ÂAA∗Â + ÂAA∗AA∗Â
]
.

Therefore, using the relations in Lemma 2.5 and Proposition 2.2,

||T||2 = ||T∗T|| = max
{||0||, ||̂AAA∗Â + ÂAA∗AA∗Â||}

= ||̂AAA∗Â + ÂAA∗AA∗Â||
= ||̂AAA∗(I + AA∗)̂A||
= ||̂AAA∗||.

Hence ||T|| = ||̂AAA∗|| 1
2 = ||A(I + A∗A)−1

2 || =
∥∥∥AǍ 1

2

∥∥∥.
A similar computations ensures that ||Q(I − P)|| = ||AǍ 1

2 ||. This completes the proof. �

Remark 3.3. Let A ∈ B(H1, H2). Then it is easy to show that
∥∥∥AǍ 1

2

∥∥∥ = ‖A‖√
1+‖A‖2

. Hence by Theorem

3.2, the gap of A is given by

θ(A):=θ(A, 0) = ||A||√
1 + ||A||2

.

In particular, when A is anm × nmatrix we obtain the result of Habibi [4].

Next we obtain a formula for θ(A, B) where both A /= 0 and B /= 0. Let A, B ∈ C(H1, H2) be densely

defined. Recall that T̂ = (I + TT∗)−1 and Ť = (I + T∗T)−1 for any densely defined T ∈ C(H1, H2).

Lemma 3.4 [1, p. 70]. Let P :=PG(A) and Q :=PG(B). Then

1. ‖P − Q‖ = max {‖P(I − Q)‖, ‖Q(I − P‖)}.
2. ‖PQ‖ = sup

{ |〈x,y〉|
‖x‖ ‖y‖ : Px = x /= 0, Qy = y /= 0

}
.

Theorem 3.5. Let A, B ∈ C(H1, H2) be densely defined. Then the operators B̂
1
2 AǍ

1
2 , BB̌

1
2 Ǎ

1
2 , AǍ

1
2 B̌

1
2 and

Â
1
2 BB̌

1
2 are bounded and

θ(A, B) = max

{∥∥∥∥BB̌ 1
2 Ǎ

1
2 − B̂

1
2 AǍ

1
2

∥∥∥∥ ,

∥∥∥∥AǍ 1
2 B̌

1
2 − Â

1
2 BB̌

1
2

∥∥∥∥}
.

Proof. Let P, Q be as in Lemma 3.4. First note that B̂
1
2 AǍ

1
2 is bounded since it is the composition of

two bounded operators B̂
1
2 and AǍ

1
2 . A similar argument concludes the boundedness of the operators

BB̌
1
2 Ǎ

1
2 , AǍ

1
2 B̌

1
2 and Â

1
2 BB̌

1
2 .

Observe that I − Q is an orthogonal projection onto the subspace {(−B∗y, y) : y ∈ D(B∗)}. Now let

us calculate ‖P(I − Q)‖ using Lemma 3.4. By definition,

‖P(I − Q)‖ = sup
o /=x∈D(A), 0 /=y∈D(B∗)

{ |〈(x, Ax), (−B∗y, y)〉|
‖(x, Ax)‖ ‖(−B∗y, y)‖

}
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= sup
o /=x∈D(A), 0 /=y∈D(B∗)

⎧⎨⎩ |〈x,−B∗y〉 + 〈Ax, y〉|√
‖x‖2 + ‖Ax‖2

√
‖y‖2 + ‖B∗y‖2

⎫⎬⎭ .

Themaps Ǎ
1
2 : H1 → D(A) and B̂

1
2 : H2 → D(B∗) are bijective. Hence for every 0 /= x ∈ D(A) there

exists a unique 0 /= u ∈ H1 such that x = Ǎ
1
2 u. For a similar reason for every 0 /= y ∈ D(B∗) there

exists a unique 0 /= v ∈ H2 such that y = B̂
1
2 v.

Now

‖x‖2 + ‖Ax‖2 = 〈x, x〉 + 〈Ax, Ax〉
= 〈Ǎ 1

2 u, Ǎ
1
2 u〉 + 〈AǍ 1

2 u, AǍ
1
2 u〉

= 〈Ǎu, u〉 + 〈A∗AǍu, u〉
= 〈u, u〉
= ‖u‖2.

Similarly ‖y‖2 + ‖B∗y‖2 = ‖v‖2. Hence

‖P(I − Q)‖ = sup
0 /=u∈H1 , 0 /=v∈H2

⎧⎪⎨⎪⎩
∣∣∣〈Ǎ 1

2 u,−B∗B̂ 1
2 v

〉
+

〈
AǍ

1
2 u, B̂

1
2 v

〉∣∣∣
‖u‖ ‖v‖

⎫⎪⎬⎪⎭
= sup

0 /=u∈H1 , 0 /=v∈H2

⎧⎪⎨⎪⎩
∣∣∣〈BB̌ 1

2 Ǎ
1
2 u, v

〉
−

〈̂
B

1
2 AǍ

1
2 u, v

〉∣∣∣
‖u‖ ‖v‖

⎫⎪⎬⎪⎭
= sup

0 /=u∈H1 , 0 /=v∈H2

⎧⎪⎨⎪⎩
∣∣∣〈(BB̌ 1

2 Ǎ
1
2 − B̂

1
2 AǍ

1
2

)
u, v

〉∣∣∣
‖u‖ ‖v‖

⎫⎪⎬⎪⎭
=

∥∥∥∥BB̌ 1
2 Ǎ

1
2 − B̂

1
2 AǍ

1
2

∥∥∥∥ .

By a similar argument it follows that

‖Q(I − P)‖ =
∥∥∥∥AǍ 1

2 B̌
1
2 − Â

1
2 BB̌

1
2

∥∥∥∥ .

Thus the gap between A and B is given by

θ(A, B) = max
{∥∥∥BB̌ 1

2 Ǎ
1
2 − B̂

1
2 AǍ

1
2

∥∥∥ ,
∥∥∥AǍ 1

2 B̌
1
2 − Â

1
2 BB̌

1
2

∥∥∥}
. �

Remark 3.6. In [9, Eqs. (2.2) and (2.3)], the author has defined a metric d on the class of unbounded

regular operators on Hilbert C∗-modules (see [10, Chapter 9] for the details of such operators). This

metric is equivalent to the gap metric, but it is different. This formula for the case of densely defined

unbounded closed operators in Hilbert spaces reduces to the following:

Let A, B ∈ C(H1, H2) be densely defined. Then

d(A, B):= sup {‖Ǎ − B̌‖, ‖Â − B̂‖, ‖AǍ − BB̌‖}. (3.1)

In particular, d(A, 0) = ‖AǍ‖ /= ‖AǍ 1
2 ‖ = θ(A). Thus the formula 3.1 and the gap formula are not the

same.
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