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Abstract. Let H1, H2 be Hilbert spaces and T be a closed linear operator defined
on a dense subspace D(T ) in H1 and taking values in H2. In this article we prove the
following results:

(i) Range of T is closed if and only if 0 is not an accumulation point of the spectrum
σ(T ∗T ) of T ∗T ,

In addition, if H1 = H2 and T is self-adjoint, then
(ii) inf {‖T x‖: x ∈ D(T ) ∩ N(T )⊥‖x‖ = 1} = inf {|λ|: 0 �= λ ∈ σ(T )},

(iii) Every isolated spectral value of T is an eigenvalue of T ,
(iv) Range of T is closed if and only if 0 is not an accumulation point of the spectrum

σ(T ) of T ,
(v) σ(T ) bounded implies T is bounded.

We prove all the above results without using the spectral theorem. Also, we give
examples to illustrate all the above results.

Keywords. Densely defined operator; closed operator; Moore–Penrose inverse;
reduced minimum modulus.

1. Introduction

Let H1, H2 be Hilbert spaces and T be a closed linear operator defined on a dense subspace
D(T ) in H1 and taking values in H2. In this note we establish the following:

(i) Range of T is closed if and only if 0 is not an accumulation point of the spectrum
σ(T ∗T ) of T ∗T ,
In addition, if H1 = H2 and T is self-adjoint, then

(ii) Every isolated spectral value of T is an eigenvalue of T ,
(iii) inf {‖T x‖: x ∈ D(T ) ∩ N(T )⊥, ‖x‖ = 1} = inf {|λ|: 0 �= λ ∈ σ(T )},
(iv) Range of T is closed if and only if 0 is not an accumulation point of the spectrum

σ(T ) of T ,
(v) σ(T ) bounded implies T is bounded.

Analogues of (i) and (ii) in the case of a bounded operator T are well-known and their
proofs can be found in [10]. In fact, for a bounded operator T , [10] contains three proofs
of (i) using different concepts in basic operator theory. It is to be mentioned that, all the
results (i)–(v) are particularly important in the context of solving operator equations of the
form T x = y (see [6, 7, 10] for elaboration of this theme).
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It is well-known that, given any densely defined closed (possibly unbounded) operator
T , the operators Ť := (I + T ∗T )−1 and T̂ := (I + T T ∗)−1 are defined on all of H1
and H2 respectively, and are bounded operators (cf. [14, 15]). Methods of our proofs for
(i) and (ii) consist of applying the above mentioned results on bounded operators to the
operators T̂ and Ť , and then using certain relationships between T , Ť and T̂ proved in
Proposition 2.7 of [7].

We found that the statement (iv) appeared in a paper of Beutler (Theorem 13, page 490
of [2]) for normal operators, without proof. Here we give a proof of this statement for self-
adjoint operators using elementary techniques which does not involve even the spectral
theorem. In fact, we prove all results without using the spectral theorem.

Since we are dealing with densely defined closed linear operators, we list below a few
features of such operators which distinguish them from bounded operators.

(a) The domain of a closed unbounded operator is a proper subspace of the whole space.
(b) The spectrum of a bounded operator is a nonempty compact subset of the complex

plane C, whereas the spectrum of an unbounded operator can be an empty set or
whole of the complex plane C or an unbounded closed subset of the complex plane C

(cf. Example 5, page 254 of [13]).
(c) If T is a bounded linear operator and if xn → x in H1, then T xn → T x. On

the other hand, if T is a closed operator, the convergence of T xn is not guaranteed
but it is guaranteed that whenever T xn converges to some y, then x ∈ D(T ) and
y = T x.

This paper is organized as follows: In the second section we introduce notations and
consider a few preliminary results which are useful to prove the main results. The third
section contains proof of (i) and some spectral properties of positive operators. In the fourth
section the statements (ii), (iii), (iv) and (v) are proved. In the fifth section we give some
examples which illustrate our results.

2. Notations and preliminaries

Throughout the paper we denote Hilbert spaces over the field of complex numbers C by
H, H1, H2, H3, and inner product and the corresponding norm on a Hilbert space are
denoted by 〈. , .〉 and ‖ · ‖ respectively. Let us fix some more notations.

L(H1, H2): The set of all linear operators T with domain and range subspaces of H1
and H2 respectively.

Let T ∈ L(H1, H2). Then domain of T , range of T and null space of T are denoted by
D(T ), R(T ) and N(T ) respectively.

For T ∈ L(H1, H2) and S ∈ L(H2, H3) with R(T ) ⊆ D(S), we define the operator
ST ∈ L(H1, H3) by ST (x) = S(T x) for all x ∈ D(T ).

For T ∈ L(H1, H2) and S ∈ L(H1, H2), we define the operator T + S ∈ L(H1, H2)

with domain as D(T ) ∩ D(S) by (T + S)(x) = T x + Sx for all x ∈ D(T ) ∩ D(S).
B(H1, H2): The space of all bounded (linear) operators from H1 into H2.
C(H1, H2): Set of all closed linear operators with D(T ) ⊆ H1 and R(T ) ⊆ H2.

L(H) := L(H, H).
C(H) := C(H, H).
B(H) := B(H, H).
For a closed subspace M of H , PM denotes the orthogonal projection with range M .
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Note 2.1. By the closed graph theorem (cf. Theorem 7.1, page 231 of [11]), it follows that
a closed operator T ∈ C(H1, H2) with D(T ) = H1 is bounded.

If S and T are two operators, then by S ⊆ T we mean that S is the restriction of T to
D(S) i.e., D(S) ⊆ D(T ) and Sx = T x, for all x ∈ D(S), and in that case, we may also
write S as T |D(S).

Suppose X1 and X2 are subspaces of a Hilbert space with X1 ∩ X2 = {0}. Then we use
the notation X1

⊕
X2 to denote the direct sum of X1 and X2, and X1

⊕⊥
X2 to denote the

orthogonal direct sum of X1 and X2 whenever 〈x, y〉 = 0 for every x ∈ X1 and y ∈ X2.
Now, a few standard definitions.

DEFINITION 2.2

An operator T ∈ L(H1, H2) with domain D(T ) is said to be densely defined if D(T ) = H1.

It is known that every densely defined operator T ∈ C(H1, H2) has a unique adjoint in
C(H2, H1), that is, there exists a unique T ∗ ∈ C(H2, H1) such that 〈T x, y〉 = 〈x, T ∗y〉
for all x ∈ D(T ), y ∈ D(T ∗).

DEFINITION 2.3 [15]

A densely defined operator T ∈ L(H) is said to be self-adjoint if D(T ) = D(T ∗) and
T ∗ = T .

DEFINITION 2.4 [15]

A self-adjoint operator T is said to be positive if 〈T x, x〉 ≥ 0 for all x ∈ D(T ).

DEFINITION 2.5 [4, 5, 14]

Let T ∈ L(H). If T is one to one, then the inverse of T is the linear operator T −1: R(T ) →
H defined T −1(T x) = x for all x ∈ D(T ). It can be seen that T T −1y = y for all
y ∈ R(T ).

DEFINITION 2.6 [4, 15]

For T ∈ L(H), the resolvent of T is denoted by ρ(T ) and is defined as

ρ(T ) = {λ ∈ C: T − λI is bijective and (T − λI)−1 ∈ B(H)}.
DEFINITION 2.7 [4, 15]

For T ∈ L(H), the spectrum σ(T ), approximate point spectrum σa(T ), and the point
spectrum σp(T ) are defined by

σ(T ) = C\ρ(T ),

σa(T ) = {λ ∈ C: T − λI is not bounded below},
σp(T ) = {λ ∈ C: T − λI is not one to one}

respectively.

By the closed graph theorem (cf. Theorem 7.1, page 231 of [11]), it follows that if
T ∈ C(H), then

σ(T ) = {λ ∈ C: T − λI is not bijective}.
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DEFINITION 2.8 [1]

Let T ∈ L(H1, H2). The subspace C(T ) := D(T ) ∩ N(T )⊥ is called the carrier of T .
We denote the operator T |C(T ) by T0.

Note 2.9 (Moore–Penrose inverse).  Let T ∈ C(H1, H2) be densely defined. Then
there exists a unique closed densely defined operator T † with domain D(T †) =
R(T )

⊕⊥
R(T )⊥ and codomain C(T ) satisfying the following properties:

(1) N(T †) = R(T )⊥,
(2) T †T x = P

R(T †)
x for all x ∈ D(T ),

(3) T T †y = PR(T ) y for all y ∈ D(T †).

This unique operator T † is said to be the Moore–Penrose inverse of T . (Recall that for a
closed subspace M of Hilbert space, PM denotes the orthogonal projection with range M).

The following property of T † is also well-known.
For every y ∈ D(T †), let L(y) := {x ∈ D(T ): ‖T x − y‖ ≤ ‖T u − y‖ ∀u ∈ D(T )}.

Then T †y ∈ L(y) and ‖T †y‖ ≤ ‖x‖ ∀ x ∈ L(y).
A different treatment of T † is described in [11] (pages 336, 339, 340), where the authors

call it ‘the maximal Tseng inverse’.
It can be seen that if T ∈ C(H1, H2) is injective, then for every y ∈ R(T ), T †y = T −1y.

DEFINITION 2.10 [1, 9]

Let T ∈ C(H1, H2). The reduced minimum modulus of T is defined by γ (T ) :=
inf {‖T x‖: x ∈ C(T ), ‖x‖ = 1}.

Some known properties of γ (T ) which are listed in the following proposition are exten-
sively used in due course.

PROPOSITION 2.11 [1, 9]

For a densely defined T ∈ C(H1, H2), the following statements (1) to (8) are equivalent.

(1) R(T ) is closed.
(2) R(T ∗) is closed.
(3) T0 := T |C(T ) has a bounded inverse.
(4) γ (T ) > 0.
(5) T † is bounded.
(6) γ (T ) = γ (T ∗).
(7) R(T ∗T ) is closed.
(8) R(T T ∗) is closed.

Now we prove two more properties of γ (T ).

PROPOSITION 2.12

Let T ∈ C(H1, H2) be densely defined. Then we have the following:

(1) If R(T ) is closed, then γ (T ) = 1
‖T †‖ .

(2) γ (T ∗T ) = γ (T )2.
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Proof.

Proof of (1). The proof for the case of bounded operators is known (see for e.g., [1, 3, 12]).
In the case of a closed operator also, the proof goes along similar lines. For the sake of
completeness, we observe that

‖T †‖ = sup

{‖T †y‖
‖y‖ : 0 �= y ∈ D(T †)

}

= sup

{‖T †y‖
‖y‖ : 0 �= y ∈ R(T )

}

= sup

{ ‖x‖
‖T x‖ : 0 �= x ∈ C(T )

}

=
(

inf

{‖T x‖
‖x‖ : 0 �= x ∈ C(T )

})−1

= γ (T )−1.

Proof of (2). If γ (T ) = 0, then by the equivalence of (1), (4) and (7) in Proposition 2.11,
R(T ) is not closed and γ (T ∗T ) = 0. Next, let us assume that γ (T ) > 0. Again, by the
equivalence of (1), (4) and (5) in Proposition 2.11, R(T ) is closed and T † is bounded,
so that T †∗T † is also bounded. Hence by (1) and using the fact that (T ∗T )† = T †T ∗†

(cf. Theorem 2, page 341 of [1]), we have

γ (T ∗T ) = 1

‖(T ∗T )†‖ = 1

‖T †‖2
= γ (T )2.

This completes the proof. �

In the following proposition we list some well-known facts.

PROPOSITION 2.13 [1]

Let T ∈ C(H1, H2) be a densely defined operator. Then

(1) N(T ) = R(T ∗)⊥

(2) N(T ∗) = R(T )⊥

(3) N(T ∗T ) = N(T ) and

(4) R(T ∗T ) = R(T ∗).

Now, we recall the following result proved in [7].

PROPOSITION 2.14 [7]

Let T ∈ C(H1, H2) be densely defined. Then I + T ∗T and I + T T ∗ are bijective densely
defined closed operators, and

T̂ = (I + T T ∗)−1, Ť = (I + T ∗T )−1
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have the following properties:

(1) T̂ and Ť are bounded and self-adjoint.
(2) T ∗T̂ and T Ť are bounded and positive operators.
(3) T̂ T ⊆ T Ť and Ť T ∗ ⊆ T ∗T̂ .
(4) ‖I − Ť ‖ ≤ 1.
(5) R(I − Ť ) = R(T ∗T ).

Theorem 2.15. For T ∈ C(H), we have the following:

(1) If μ ∈ C and λ ∈ σ(T ), then λ + μ ∈ σ(T + μI).
(2) If α ∈ C and λ ∈ σ(T ), then αλ ∈ σ(αT ).

(3) σ(T 2) = {λ2: λ ∈ σ(T )}.

Proof. Proofs of (1) and (2) follow directly from the definition of the spectrum. The relation
in (3) is proved in Theorem 9.6, page 326 of [16] using operational calculus. Here we
present a proof by using elementary methods. For this, let λ ∈ C be such that λ2 /∈ σ(T 2).
Then (T 2 − λ2I )−1 ∈ B(H). By definition this means that there exists a unique operator
Sλ ∈ B(H) such that Sλ(T

2 − λ2I ) = I |D(T 2) ⊆ (T 2 − λI)Sλ = I . That is,

Sλ(T − λI)(T + λI) = I |D(T 2) ⊆ (T − λI)(T + λI)Sλ = I.

From the last equality, it also follows that T − λI is onto.
Next, we show that T −λI is one to one. For this, let x ∈ D(T ) such that (T −λI)x = 0,

that is, T x = λx. Then we have T x ∈ D(T ) so that x ∈ D(T 2). Applying T to both
sides of the equation T x = λx, we get T 2x = λ2x, that is, (T 2 − λ2I )x = 0. Since
T 2 − λ2I is injective, we have x = 0. Thus, T − λI is one to one as well. Consequently,
λ /∈ σ(T ).

For the other way implication, let λ ∈ C be such that λ2 ∈ σ(T 2). We have to show
that either λ ∈ σ(T ) or −λ ∈ σ(T ). Suppose this is not true. Then both T − λI and
T + λI have bounded inverses. First we show that N(T 2 − λ2I ) = {0}. For this, let
x ∈ D(T 2) ⊆ D(T ) such that (T 2 −λ2I )x = 0, that is, (T −λI)(T +λI)x = 0. Now, by
the injectivity of T −λI and T +λI , it follows that x = 0. It remains to show that T 2 −λI

is onto. For this, let y ∈ H . Since T − λI is onto, there exists u ∈ D(T ) ⊆ H such that
(T −λI)u = y. As T +λI is onto, there exists x ∈ D(T ) such that (T +λI)x = u. Hence
(T − λI)(T + λI)x = y, that is, (T 2 − λI)x = y. This completes the proof of (3). �

3. A spectral characterization of closed range operators

First we prove two preliminary results which are required for proving our main theorems.
Recall that for T ∈ L(H), T0 := T |C(T ).

PROPOSITION 3.1

Let T ∈ L(H) be a positive operator. Then the following results hold.

(1) T † is positive.
(2) σ(T )\{0} = σ(T0)\{0}.
(3) σ(T †)\{0} = σ(T −1

0 )\{0}.
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(4) σ(T ) = σa(T ).
(5) 0 /∈ σ(I + T ), that is (I + T )−1 ∈ B(H).
(6) If λ > 0, then λ ∈ σ(T ) ⇔ 1

λ
∈ σ(T †).

(7) If 0 �∈ σ(T ), then 0 �= λ ∈ σ(T ) ⇔ 1
λ

∈ σ(T −1).

Proof.

Proof of (1). Let T ∈ L(H) be a positive operator. Then T is a self-adjoint operator as
well. Using the relation T †∗ = T ∗† (cf. Theorem 2, page 341 of [1]), it is easy to show
that T † is self-adjoint. Since D(T †) = R(T )

⊕⊥
R(T )⊥ (see Theorem 2, page 341 of [1]

for details), there exist u ∈ C(T ) and v ∈ R(T )⊥ such that y = T u + v. Using (2) and
(4) in Note 2.9, and using the fact that N(T )⊥ = R(T ) (cf. Proposition 2.13(1)), we have

〈T †y, y〉 = 〈T †y, T u + v〉 = 〈T †y, T u〉
= 〈T T †y, u〉 = 〈P |R(T ) y, u〉 = 〈T u, u〉 ≥ 0.

Proof of (2). Since T is self-adjoint, it is reducible by N(T ), that is,

T (D(T ) ∩ N(T ) ⊆ N(T ), T (D(T ) ∩ N(T )⊥) ⊆ N(T )⊥.

Therefore, by a known result (cf. Theorem 5.4, page 289 of [16]),

σ(T ) = (σ (T |N(T )) ∪ σ(T |C(T )).

That is, σ(T ) = {0} ∪ σ(T0). Hence σ(T )\{0} = σ(T0)\{0}.
Proof of (3). Since T † is self-adjoint, it is reducible by R(T )⊥. Now, using the fact that
T †|R(T ) = T −1

0 , (2) implies that, σ(T †)\{0} = σ(T −1
0 )\{0}.

Proof of (4). By definition σa(T ) ⊆ σ(T ), and since T is self-adjoint, σ(T ) ⊆ R. Now,
suppose λ /∈ σa(T ). Then there exists a positive number k such that

‖T x − λx‖ ≥ k‖x‖, for all x ∈ D(T ).

This shows that R(T − λI) is closed and T − λI is one to one. As T − λI is self-adjoint,
we also have R(T − λI) = H , by (2) in Proposition 2.13. Hence, λ /∈ σ(T ).

Proof of (5). Since T is positive, I +T is positive. Assume for a moment that 0 ∈ σ(I +T ).
Now by (5), σ(I + T ) = σa(I + T ). Hence there exists a sequence (xn) ∈ D(T ),
with ‖xn‖ = 1, for each n such that ‖(I + T )xn‖ → 0 as n → ∞. Now using the
Cauchy–Schwartz inequality, it follows that 〈(I + T )xn, xn〉 → 0 as n → ∞. That is
〈T xn, xn〉 → −1. On the other hand, since T is positive 〈T xn, xn〉 ≥ 0 for all n. This is a
contradiction. Therefore 0 /∈ σ(I + T ).

Proof of (6). Let λ ∈ (0, ∞) be such that λ ∈ σ(T ). Then by (4), there exists a sequence
(xn) ∈ C(T ) with ‖xn‖ = 1 for all n such that ‖T xn − λxn‖ = ‖T0xn − λxn‖ →
0 as n → ∞. Let yn = T0(xn). Since T0: C(T ) → R(T ) is bijective, xn = T −1

0 (yn). Thus
‖yn −λT −1

0 (yn)‖ → 0. Also for large values of n, ‖yn‖ is close to |λ| and hence non-zero.
Now taking zn = yn/‖yn‖, we have ‖T −1

0 zn − 1
λ
zn‖ → 0 as n → ∞. This together with

(3), we have

1

λ
∈ σ(T −1

0 \{0}) = σ(T †)\{0}.
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If 1
λ

∈ σ(T †), then by the above argument it follows that 1
1/λ

∈ σ(T ††). But, it is known

that T †† = T (see Theorem 2, page 341 of [1]). Thus, we have λ ∈ σ(T ).

Proof of (7). Since T −1 exists, we have T −1 = T −1
0 = T †. Hence, the result follows

from (5). �

PROPOSITION 3.2

Let T ∈ C(H1, H2) be densely defined. Let Ť = (I + T ∗T )−1 and A = I − Ť . Then

(1) σ(A) =
{

λ
1+λ

: λ ∈ σ(T ∗T )
}

(2) σ(T ∗T ) =
{

μ
1−μ

: μ ∈ σ(A)
}

.

Proof. By Theorem 2.15 and Proposition 3.1, we have μ ∈ σ(A) if and only if there exists
λ ∈ σ(T ∗T ) such that μ = 1 − 1

λ+1 = λ
1+λ

. Since I − A = (I + T ∗T )−1 is injective and

T ∗T = A(I −A)−1 on D(T ∗T ), again by Theorem 2.15 and Proposition 3.1, λ ∈ σ(T ∗T )

if and only if there exists a μ ∈ σ(A) such that

λ = 1

1 − μ
− 1 = μ

1 − μ
.

This completes the proof. �

We now give a proof of the statement (1) given in the Introduction.

Theorem 3.3. Let T ∈ C(H1, H2) be densely defined. Then R(T ) is closed in H2 if and
only if there exists r > 0 such that σ(T ∗T ) ⊆ {0} ∪ [r, ∞).

Proof. By Proposition 2.11 and Proposition 2.12, R(T ) is closed if and only if R(T ∗T ) is
closed. It can be easily seen that R(T ∗T ) = R(A), where A := I − (I + T ∗T )−1. Note
that A is a bounded self-adjoint operator on H1. Hence R(A) is closed if and only if 0 is
not an accumulation point of σ(A∗A) = σ(A2) if and only if 0 is not an accumulation
point of σ(A) (cf. Theorem 2.5 of [10]). Now by Proposition 3.2, 0 is not an accumulation
point of σ(A) if and only if 0 is not an accumulation point of σ(T ∗T ), equivalently, there
exists an r > 0 such that σ(T ∗T ) ⊆ {0} ∪ [r, ∞). �

In the remaining part of this section we prove some spectral properties of positive
operators which will be used in the next section.

Theorem 3.4. Let T ∈ L(H) be a positive operator. If σ(T ) is bounded, then T is bounded
(In particular, D(T ) = H ).

Proof. Since T is positive, by (5) of Proposition 3.1, I + T is bijective and (I + T )−1 ∈
B(H). Let A = T (I + T )−1. Clearly, A is a bounded operator. In fact, A is a positive
operator. To see this, let x ∈ H and y := (I + T )−1x. Then we have

〈Ax, x〉 = 〈T (I + T )−1x, x〉
= 〈Ty, x〉,
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= 〈Ty, (I + T )y〉
= 〈Ty, y〉 + 〈Ty, T y〉.

Thus, by positivity of T , 〈Ax, x〉 ≥ 0 for all x ∈ H showing that A is positive as well. In
particular, A is a bounded self-adjoint operator.

We note that T = A(I − A). Now, since σ(A) �= ∅, using the argument similar
to the one used in proving Proposition 3.2, we have T = A(I − A)−1 on D(T ) and
σ(T ) = {λ/(1 − λ): λ ∈ σ(A)}.

Now suppose that σ(T ) is bounded. Then there exists a k > 0 such that λ
1−λ

≤
k for every λ ∈ σ(A). That is, λ ≤ k

1+k
< 1 for every λ ∈ σ(A). Since A is bounded

and self-adjoint operator, we have ‖A‖ = sup {|λ|: λ ∈ σ(A)} ≤ k
1+k

< 1. Thus I − A

is bijective and (I − A)−1 is a bounded operator. Now, since T is closed, D(T ) is closed
(cf. Theorem 3.17, page 165 of [11]). Hence T ∈ B(H). �

Now we use Theorem 3.4 to prove the following result.

Theorem 3.5. Let T ∈ L(H) be a positive operator and

d(T ) := inf {|λ|: λ ∈ σ(T )\{0}} = d(0, σ (T )\{0}).
Then γ (T ) = d(T ).

Proof. We consider the following two cases:

Case 1. γ (T ) > 0. We know by Proposition 2.11 that if γ (T ) > 0, then R(T ) is closed. In
this case T −1

0 and T † are bounded, self-adjoint operators with ‖T −1
0 ‖ = ‖T †‖ = 1/γ (T ).

Hence by Proposition 3.1,

γ (T ) = 1

‖T †‖

= 1

sup{|μ|: μ ∈ σ(T †)}

= 1

sup{|μ|: μ ∈ σ(T −1
0 )}

= 1

sup{1/|λ|: 0 �= λ ∈ σ(T0)}

= inf {|λ|: 0 �= λ ∈ σ(T0)}
= d(T ).

Case 2. γ (T ) = 0. By Proposition 2.11, T † is an unbounded operator. Hence, by Propo-
sition 3.1 and by Theorem 3.4, σ(T †) is bounded. Therefore, for each n ∈ N, there
exists λn ∈ σ(T †) such that λn ≥ n. Now by Proposition 3.1, 1

λn
∈ σ(T ). Since,

1
λn

→ 0 as n → ∞, it follows that d(T ) = 0. �
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Theorem 3.6. Suppose T ∈ L(H) is a positive operator and 0 is an isolated spectral
value of T . Then 0 ∈ σp(T ).

Proof. Since 0 is an isolated spectral value of T , d(T ) > 0. Hence by Theorem 3.5,
γ (T ) > 0 so that by Proposition 2.11, R(T ) is closed. If 0 /∈ σp(T ), then N(T ) = {0}
so that we also have R(T ) = R(T ) = N(T )⊥ = H , making T bijective and hence
0 �∈ σ(T ), a contradiction. Hence 0 ∈ σp(T ). �

Remark 3.7. The converse of Theorem 3.6 need not be true. To see this, consider T : �2 →
�2 defined by

T (x1, x2, x3, x4, x5, . . . ) =
(

0, 2x2,
1

3
x3, 4x4,

1

5
x5, . . .

)

,

where D(T ) = {
x ∈ �2: (0, 2x2,

1
3x3, 4x4,

1
5x5, . . . ) ∈ �2

}
. Here T is a positive operator.

Since T is not one to one, 0 ∈ σp(T ) but it is not an isolated point of the spectrum
σ(T ) = {

0, 2, 1
3 , 4, 1

5 , . . .
}
.

4. Self-adjoint operators

In this section we extend the results about the positive operators proved in the last section
to self-adjoint operators. In the process, we give an elementary proof of a result of Beutler
which was stated in (Theorem 13, page 490 of [2]) without proof. For proving this result
we need the following.

Theorem 4.1. Let T ∈ L(H) be a self-adjoint operator. Then every isolated spectral
value of T is an eigenvalue.

Proof. Let λ be an isolated point of σ(T ). Then 0 is an isolated point of σ(T −λI). Hence
by Theorem 2.15, 0 is an isolated point of σ(T −λI)2. As (T −λI)2 is a positive operator, by
Theorem 3.6, 0 is an eigenvalue of (T −λI)2. But N(T −λI) = N((T −λI)∗(T −λI)) =
N(T − λI)2 �= {0}. Hence λ is an eigenvalue of T . �

PROPOSITION 4.2

Let T ∈ L(H) be self-adjoint. Then the following statements hold.

(1) T † is self-adjoint.
(2) σ(T )\{0} = σ(T0)\{0}.
(3) σ(T †)\{0} = σ(T −1

0 )\{0}.
(4) Let 0 �= λ ∈ [0, ∞). Then λ ∈ σ(T ) ⇔ 1

λ
∈ σ(T †).

(5) σ(T ) = σa(T )).
(6) If T −1 exists, then 0 �= λ ∈ σ(T ) ⇔ 1

λ
∈ σ(T −1).

Proof. The proofs of all these statements are analogous to those of Proposition 3.1. �

Theorem 4.3. Let T be self-adjoint and

d(T ) = inf {|λ|: λ ∈ σ(T )\{0}} = d(0, σ (T )\{0}).
Then γ (T ) = d(T ).
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Proof. Again note that T 2 is a positive operator. Hence γ (T 2) = d(T 2) by Theorem 3.5.
But γ (T 2) = γ (T ∗T ) = γ (T )2 by Proposition 2.12. Also d(T 2) = d(T )2 by
Theorem 2.15. �

Theorem 4.4. Let T ∈ L(H) be self-adjoint. Then R(T ) is closed if and only if 0 is not
an accumulation point of σ(T ).

Proof. By Proposition 2.11, R(T ) is closed if and only if γ (T ) > 0 and by Theorem 4.3,
γ (T ) = d(T ). Hence, R(T ) is closed if and only if d(T ) > 0 if and only if 0 is not an
accumulation point of σ(T ). �

Remark 4.5. Theorem 4.4 can be used to give another proof of Theorem 3.3 as follows:
Let T ∈ C(H1, H2) be densely defined. Then R(T ) is closed in H2 if and only if R(T ∗T )

is closed (Proposition 2.11) if and only if 0 is not an accumulation point of σ(T ∗T ) by
Theorem 4.4.

Theorem 4.6. Let T be a self-adjoint operator. If σ(T ) is bounded, then T ∈ B(H).

Proof. Note that T 2 is positive and σ(T 2) = {λ2: λ ∈ σ(T )} is bounded. Hence by
Theorem 3.4, T 2 is bounded with domain D(T 2) = H . Hence D(T ) = H , by the closed
graph theorem. �

For the next Corollary, we recall that for T ∈ B(H), |T | ∈ B(H) is the unique postiive
operator satisfying |T |2 = T ∗T . A simple proof for the existence of such operator |T | can
be found in ([8], Theorem 5.1.3, page 177).

COROLLARY 4.7

Let T ∈ B(H). Then

γ (T ) = inf {λ: λ ∈ σ(|T |)\{0}},
where |T | denotes the square root of T ∗T .

Proof. The operator |T | is bounded, self-adjoint and positive. Using Proposition 2.12, we
have

γ (|T |)2 = γ (|T |2) = γ (T ∗T ) = γ (T )2.

Now by Theorem 4.3, we get the result. �

5. Examples

Example 5.1. Let H = �2. Define T on H by

T (x1, x2, x3, . . . , xn, . . . ) = (x1, 2x2, 3x3, . . . , nxn, . . . )

whose domain is

D(T ) =
{

(x1, x2, x3, . . . , xn, . . . ) ∈ H :
∞∑

j=1

|jxj |2 < ∞
}

.
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Clearly T is unbounded and closed since T ∗ = T . And since D(T ) contains c00, the
space of all sequences having atmost finitely many non-zero terms, we have D(T ) =
H. Also R(T ) is closed (see Example 3.12, page 168 of [11]). Here γ (T ) = 1. Now
σp(T ) = {n: n ∈ N}. We claim that σ(T ) = σp(T ). Suppose λ �= n, for all n ∈ N. Then
there exists an η > 0 such that |λ − n| ≥ η, for all n ∈ N. Define Sλ: H → H by
Sλ(x) = (

x1
λ−1 , . . . , xn

λ−n
, . . .

)
. Then Sλ is bounded, ‖Sλ‖ ≤ 1

η
and Sλ is the inverse of

λI − T . Here d(T ) = 1. Similarly we can prove that σ(T ∗T ) = σ(T 2) = {n2: n ∈ N}.
This illustrates Theorems 3.3, 4.1, 4.3, 4.4 and 4.6.

Example 5.2. On �2, define an operator T by

T (x1, x2, . . . , xn, . . . , ) = (0, 2x2, 3x3, 4x4, . . . , )

with

D(T ) =
{

(x1, x2, x3, . . . , xn, . . . ):
∞∑

j=2

|jxj |2 < ∞
}

.

Here T = T ∗, T is densely defined and closed, N(T ) = {(x1, 0, 0, . . . ): x1 ∈ C} and

C(T ) =
{

(0, x2, x3, . . . ):
∞∑

j=2

|jxj |2 < ∞
}

,

Ť (x1, x2, x3, . . . , xn, . . . ) =
(

x1,
x2

2
,
x3

5
, . . .

xn

(n − 1)2 + 1
, . . .

)

.

Note that σ(T ) = {n − 1: n ∈ N}, σ(T ∗T ) = {(n − 1)2: n ∈ N} and γ (T ) = 1 = d(T ).
Also ‖T x‖ ≥ ‖x‖ for all x ∈ C(T ). This illustrates Theorems 3.3, 4.1, 4.3, 4.4 and 4.6.

Example 5.3. Let H = �2. Define an operator T on H by

T (x1, x2, x3, . . . , xn, . . . ) =
(

x1, 2x2,
1

3
x3, 4x4,

1

5
x5, . . .

)

with domain

D(T ) =
{

(x1, x2, x3, . . . , xn, . . . ):

(

x1, 2x2,
1

3
x3, 4x4,

1

5
x5, . . .

)

∈ H

}

.

This operator is densely defined since its domain contains c00. Moreover T ∗ = T , so
that T is closed. We can easily show that N(T ) = N(T ∗) = {0}. Hence C(T ) =
D(T ). This implies that R(T ) = H. We show that R(T ) is a proper dense subspace.
Now consider

(
1, 1

2 , 1
3 , . . . , 1

n
, . . .

) ∈ H . We show that this is not in R(T ). Suppose
(
1, 1

2 , 1
3 , . . . , 1

n
, . . .

) = (
x1, 2x2,

1
3x3, 4x4,

1
5x5, . . .

)
for some (x1, x2, x3, . . . , xn, . . . ) ∈

D(T ).

A small computation shows that (x1, x2, x3, . . . , xn, . . . ) = (
1, 1

4 , 1, 1
16 , 1, . . .

)
is not

in H. Now let us calculate σp(T
∗T ). Since T ∗T is one to one, we have 0 /∈ σp(T

∗T ). And
σp(T

∗T ) = {
1, 4, 1

9 , 16, 1
25 , . . .

}
. Since the spectrum is closed, 0 ∈ σ(T ∗T ), which is an

accumulation point of the sequence
{ 1

n2 : n ∈ N
}
. Also

σp(T ) =
{

1, 2,
1

3
, 4,

1

5
, . . .

}

⊆ σ(T ).
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In this case γ (T ) = 0 = d(T ). This example also illustrates Theorems 3.3, 4.1, 4.3, 4.4
and 4.6.
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in Mathematics/Ouvrages de Mathématiques de la SMC, 15 (New York: Springer-Verlag)
(2003) Theory and applications MR MR1987382 (2004b:15008)

[2] Beutler Frederick J, The operator theory of the pseudo-inverse, II, Unbounded opera-
tors with arbitrary range, J. Math. Anal. Appl. 10 (1965) 471–493, MR MR0179619
(31 #3865b)

[3] Ding J and Huang L J, On the perturbation of the least squares solutions in Hilbert spaces,
Proceedings of the 3rd ILAS Conference (FL: Pensacola) (1993) vol. 212/213 (1994)
pp. 487–500, MR MR1306994 (95i:47023)

[4] Dunford Nelson and Schwartz Jacob T, Linear operators Part II, Wiley Classics Library
(New York: John Wiley & Sons Inc.) (1988) Spectral theory, Selfadjoint operators in
Hilbert space, with the assistance of William G Bade and Robert G Bartle, Reprint of the
1963 original (A Wiley-Interscience Publication), MR MR1009163 (90g:47001b)

[5] Goldberg Seymour, Unbounded linear operators: Theory and applications (New York:
McGraw-Hill Book Co.) (1966)

[6] Groetsch C W, The theory of Tikhonov regularization for Fredholm equations of the first
kind, Research Notes in Mathematics, Vol. 105, Pitman (Advanced Publishing Program)
(MA: Boston) (1984), MR MR742928 (85k:45020)

[7] Groetsch C W, Inclusions for the Moore-Penrose inverse with applications to com-
putational methods, Contributions in numerical mathematics, World Sci. Ser. Appl.
Anal., vol. 2, World Sci. Publ. (NJ: River Edge) (1993) pp. 203–211, MR MR1299760
(95h:65041)

[8] Groetsch Charles W, Elements of applicable functional analysis, Monographs and Text-
books in Pure and Applied Mathematics, vol. 55 (New York: Marcel Dekker Inc.) (1980),
MR MR569746 (83m:46103)

[9] Kato Tosio, Perturbation theory for linear operators, second ed. (Berlin: Springer-Verlag)
(1976) Grundlehren der Mathematischen Wissenschaften, Band 132, MR MR0407617
(53 #11389)

[10] Kulkarni S H and Nair M T, A characterization of closed range operators, Indian J. Pure
Appl. Math. 31(4) (2000) 353–361, MR MR1760936 (2001d:47009)

[11] Nair M T, Functional analysis: A first course (New Delhi: Prentice-Hall of India) (2002)
[12] Petryshyn W V, On generalized inverses and on the uniform convergence of (I − βK)n

with application to iterative methods, J. Math. Anal. Appl. 18 (1967) 417–439, MR
MR0208381 (34 #8191)

[13] Reed Michael and Simon Barry, Methods of modern mathematical physics I, second
ed., (New York: Harcourt Brace Jovanovich Publishers, Academic Press Inc.) (1980)
Functional analysis, MR MR751959 (85e:46002)
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