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COMPLETENESS AND INVERTIBILITY
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(Received : 03 - 07 - 2015)

Abstract. We show that two very important concepts in Functional Anal-

ysis, namely the completeness of a normed linear space and invertibility of

a bounded linear map are related to each other. This gives a possibly new

characterization of completeness.

1. Introduction
Answers to many important questions in Functional Analysis depend upon

knowing whether a certain normed linear space is complete or/and whether a

certain bounded linear map has a bounded linear inverse. Usually students do not

think that these two important ideas in Functional Analysis, namely completeness

and invertibility, have anything to do with each other. In this note, we try to draw

the attention of students to connections between these ideas.

The following well known theorem is given in many textbooks of Functional

Analysis. (See for example, [1].)

Theorem 1.1. Let T be a bounded(continuous) linear map from a Banach space

X to a normed linear space Y . Then the following are equivalent:

1. T has a bounded inverse.

2. T is bounded below and the range of T is dense in Y .

It is natural to ask what happens if the hypothesis of completeness of X is

dropped. Somehow, this question is not discussed in the textbooks. It is obvious

that (1) would still imply (2) even without completeness. But the converse is false

and it is easy to construct a counterexample. We give such an example. Further,

it is interesting to note that (2) is equivalent to the following even without the

completeness of X.

3. The transpose T � of T has a bounded inverse.

Even more interesting is the fact that the completeness of X is equivalent to the

invertibility of every bounded linear map satisfying (2).

2. preliminaries

We recall a few standard notations, definitions and results that are used in the

next section. For normed linear spaces X,Y , we denote by BL(X,Y ) the set of
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all bounded linear operators from X to Y . For an operator T ∈ BL(X,Y ), N(T )

denotes the null space of T and R(T ) denotes the range of T. Thus

N(T ) = {x ∈ X : T (x) = 0} and R(T ) = {T (x) : x ∈ X}.
Further, T is said to be bounded below if there exists α > 0 such that �T (x)� ≥

α�x� for all x ∈ X and T is said to be invertible if there exists S ∈ BL(Y,X)

such that ST = IX , the identity map on X, and TS = IY , the identity map on Y .

The dual space X � of X, is the set of all bounded linear functionals on X, that is,

X � = BL(X,K), where K is the underlying field of real or complex numbers. For

a subset A ⊆ X, the annihilator A0 is the set of all continuous linear functionals

that vanish on A, that is, A0 := {φ ∈ X �, φ(a) = 0 for all a ∈ A}. If A is a

subspace of X, then it follows by the Hahn-Banach Theorem, that A is dense in

X, if and only if A0 = {0}. The transpose T � of T ∈ BL(X,Y ) is the operator in

BL(Y �, X �) defined by

(T �ψ)(x) := ψ(T (x)) for all x ∈ X and ψ ∈ Y �. All the other notations (including

the notations for sequence spaces c00, �1 etc.) are as in [1] and [2]. We shall make

use of the following well known results:

1. (R(T ))0 = N(T �).

2. Every normed linear space X can be viewed as a dense subspace of a Banach

space which we shall denote by Xc. (More precisely, there is a linear isometry of

X onto a dense subspace of Xc.) The Banach space Xc is called the completion

of X. These results can be found in any book on Functional Analysis, for example

[1] and [2].
3. Notes

We begin with an example.

Example 3.1. Let X := (c00, �.�1), Y := �1 and T : X → Y be given by T (x) = x

for x ∈ X. Clearly, T is bounded below, range of T is dense in Y , but T is not

onto and hence not invertible. More generally, we can consider the inclusion map

from a proper dense subspace of a normed linear space.

Remark 3.2. Note that in the above example, though T is not invertible, its

transpose T � is invertible. In fact, both the dual spaces X � of X and Y � of Y can

be identified with �∞ in the usual way (See [2] for details.) and with respect to

this identification T � becomes the identity operator on �∞.

This leads to some natural observations. First we consider some elementary

results. The following elementary result is given as an Exercise in some books.

Lemma 3.3. Let T be a bounded(continuous) linear map from a normed linear

space X to a normed linear space Y . Then R(T ) is dense in Y if and only if T �

is injective.

Proof. Recall that R(T ) is dense in Y if and only if {0} = (R(T ))0 = N(T �) if and

only if T � is injective. �
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Lemma 3.4. Let T be a bounded(continuous) linear map from a normed linear

space X to a normed linear space Y . Then the following statements are equvivalent:

1. T has a bounded inverse from R(T ) to X.

2. T is bounded below.

3. T � is onto.

Proof. (1) implies (2): This is easy. Suppose S : R(T ) → X is a bounded inverse

of T . Then for each x ∈ X,

�x� = �ST (x)� ≤ �S��T (x)�, that is, �T (x)� ≥ 1
�S��x�.

(2) implies (1) and (3): Since T is bounded below, there exists α > 0 such that

�T (x)� ≥ α�x� for all x ∈ X. In particular, T is injective. Hence we can define a

map S : R(T ) → X by S(y) = x for y = T (x) ∈ R(T ). This is well defined since

T is injective. It is easy to see that S is linear. Also

�S(y)� = �x� ≤ 1
α�T (x)� = 1

α�y�.
Hence S is bounded. This proves (1).

Next let φ ∈ X � and y ∈ R(T ). There exists unique x ∈ X such that y = T (x).

Define ψ by ψ(y) := ψ(T (x)) = φ(x). This defines ψ as a linear functional on R(T ).

Further,

|ψ(y)| = |ψ(T (x))| = |φ(x)| ≤ �φ��x� ≤ �φ� 1
α�T (x)� = �φ� 1

α�y�.
This shows that ψ is bounded on R(T ) and hence has a bounded (norm preserving)

extension to Y by the Hahn-Banach Theorem. We denote this extension also by

the same symbol ψ. Thus ψ ∈ Y � and φ = T �(ψ). This shows that T � is onto.

(3) implies (2): Let x ∈ X. By the Hahn-Banach Theorem, there exists φ ∈ X �

such that φ(x) = �x� and �φ� = 1. Further, since T � is onto, there exists ψ ∈ Y �

such that φ = T �(ψ). Now

�x� = φ(x) = T �(ψ)(x) = ψ(T (x)) ≤ �ψ��T (x)�, that is, �T (x)� ≥ 1
�ψ��x�

This shows that T is bounded below. �
We now give the main theorem.

Theorem 3.5. Let T be a bounded(continuous) linear map from a normed linear

space X to a normed linear space Y . Consider the following statements:

1. T has a bounded inverse.

2. T is bounded below and the range of T is dense in Y .

3. T � is invertible.

Then (2) and (3) are equivalent and each is implied by (1). If, in addition, X

is a Banach space, then all the three statements are equivalent.

Proof. (1) implies (2): Obvious. Since T has a bounded inverse, R(T ) = Y . Also

T is bounded below by Lemma 3.4.

(2) if and only if (3): By Lemma 3.3, R(T ) is dense in Y , if and only if T � is

injective. Further, by Lemma 3.4, T is bounded below, if and only if, T � is onto.

Thus (2) is equivalent to the following:
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T � : Y � → X � is a bijection.

Hence T � is invertible by the Closed Graph Theorem as X �, Y � are Banach spaces.

Finally, if X is a Banach space, then (2) implies (1) by Theorem 1.1 and hence

all the three statements are equivalent. �
Remark 3.6. We may further note that completeness of X is , in fact, equivalent

to the invertiblity of every bounded linear map satisfying (2). In other words, a

normed linear space X is a Banach space if and only if every bounded linear map

T from X to any normed linear space Y such that T is bounded below and the

range of T is dense in Y , is invertible. The only if part is already proved above.

To prove the if part, consider Y = Xc, the completion of X. Then there is a linear

isometry T of X onto a dense subspace Y0 of Y . (See [2] for details.) Obviously,

this T is bounded below and R(T ) = Y0 is dense in Y . Hence by the hypothesis, T

is invertible and, in particular, onto. Thus X is linearly isometric to Y and hence

complete.
Remark 3.7. It is known that the invertibility of an operator is closely related to

its spectrum. Let X be a complex normed linear space and T ∈ BL(X,X). Recall

that the spectrum σ(T ) of T is the set of all complex numbers λ such that λI − T

is not invertible. Applying Theorem 3.5 to λI − T , we obtain the known result

that σ(T �) ⊆ σ(T ) and the equality holds if X is a Banach space. (See [2]) (The

inclusion can be strict ifX is not a Banach space. See the next example.) A natural

question is whether the converse holds. In other words, can the completeness be

also characterized in terms of spectra as follows: A complex normed linear space X

is complete if and only if σ(T �) = σ(T ) for all T ∈ BL(X,X)? Another formulation

of the same question is as follows: Given an incomplete normed linear space X,

does there exist T ∈ BL(X,X) such that T is bounded below, its range is dense

in X and T is not invertible (that is, not onto)? Note that the above examples

and remarks do not answer this question as the spaces X and Y considered there

are different.
Example 3.8. This example shows that the inclusion σ(T �) ⊆ σ(T ) can be strict

if X is not complete.

Let X := (c00, �.�2), and T : X → X be the right shift operator given by

T (x1, x2, . . .) = (0, x1, x2, . . .) for x := (x1, x2, . . .) ∈ X. Then the dual space X �

can be identified with �2 and the transpose T � of T can be identified with the left

shift operator. (See [2] for details.) Then it can be shown that

σ(T �) = {z ∈ C : |z| ≤ 1}, the closed unit disc. On the other hand, it is easy to

see that the equation (λI − T )x = e1 = (1, 0, 0, . . .) has no solution x ∈ X for any

complex number λ. In other words, λI − T is not onto. Thus σ(T ) = C.
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