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Track number of line graphs

Deepak Rajendraprasad

The track number τ(G) of a graph G is the minimum number of
interval graphs whose union is G. We show that the track num-
ber of the line graph L(G) of a triangle-free graph G is at least
lg lgχ(G) + 1, where χ(G) is the chromatic number of G. Using
this lower bound and two classical Ramsey-theoretic results from
literature, we answer two questions posed by Milans, Stolee, and
West [J. Combinatorics, 2015] (MSW15). First we show that the
track number τ(L(Kn)) of the line graph of the complete graphs
Kn is at least lg lg n− o(1). This is asymptotically tight and it im-
proves the bound of Ω(lg lg n/ lg lg lg n) in MSW15. Next we show
that for a family of graphs G, {τ(L(G)) : G ∈ G} is bounded if
and only if {χ(G) : G ∈ G} is bounded. This affirms a conjecture
in MSW15. All our lower bounds apply even if one enlarges the
covering family from the family of interval graphs to the family of
chordal graphs.
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1. Introduction

The track number τ(G) of a graph G is the minimum number of interval
graphs whose union is G. Heldt, Knauer, and Ueckerdt [HKU11] conjectured
that the track number of line graphs is unbounded. Milans, Stolee, and West
[MSW15] proved this conjecture by showing that the track number τ(L(Kn))
of the line graph of the n-vertex complete graph Kn is Ω(lg lg n/ lg lg lg n).
They suspected that the denominator in the lower bound could be eliminated
and also proposed

Conjecture 1.1 (Milans, Stolee, West [MSW15]). For a sequence (Gn)∞n=1

of graphs, if χ(Gn) → ∞, then τ(L(Gn)) → ∞, where χ(G) and L(G)
denote, respectively, the chromatic number and the line graph of the graph
G.
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In this note, we show that τ(L(Kn)) = (1 + o(1)) lg lg n and prove the
above conjecture. Milans et al. obtain bounds on τ(L(Kn)) by connecting
the problem with two problems in Ramsey theory of ordered hypergraphs.
We use results and techniques from a paper by Esperet, Gimbel, and King
[EGK10] who studied the covering of line graphs with equivalence relations.
The techniques there are close in spirit to that of the Erdös-Szekeres theorem
on total orders and hence also Ramsey theoretic. Incidentally, the result of
Esperet et al. disproved a conjecture of McClain [McC09] that the line graph
of any triangle-free graph can be covered by three equivalence graphs. We
first work with triangle-free graphs and then lift the lower bounds obtained
there to complete graphs and general graphs using two classical results from
Ramsey theory of graphs.

1.1. Notation and preliminaries

All graphs considered in this note are finite, simple and do not contain self-
loops. Logarithm to the bases 2 and e are denoted by lg and ln respectively.
The line graph L(G) of a graph G is the intersection graph of the edge-set
of G. That is, two vertices of L(G) are adjacent in L(G) if and only if the
corresponding two edges ofG share a common vertex. The chromatic number
of a graph G is denoted by χ(G). The subgraph of a graph G induced on a
subset S of the vertices of G is denoted by G[S].

A chordal graph is a graph with no induced cycles of length more than
three. A graph is an interval graph if it can be represented as the intersection
graph of intervals on a straight line. An equivalence graph is a disjoint union
of cliques. The complete graph on n vertices is denoted by Kn.

The covering number of a graph G with respect to a family F of graphs is
the minimum number of graphs from F whose union is G. For example, the
arboricity a(G), the equivalence covering number eq(G) and the track num-
ber τ(G) of a graph G are its covering numbers with respect to the families
of forests, equivalence graphs and interval graphs respectively. Equivalence
covering number was introduced by Duchet in 1979 [Duc79] and track num-
ber was introduced by Gyárfás and West in 1995 [GW95]. For this article,
we find it more natural to analyse the covering number with respect to the
family of chordal graphs.

Definition 1.2. The chordal covering number cc(G) of a graph G is the
minimum number of chordal graphs whose union is G.

Since equivalence graphs are interval graphs, and interval graphs are
chordal, every graph G satisfies the inequalities

(1) cc(G) ≤ τ(G) ≤ eq(G).
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In the course of this note, it will be clear that these parameters are all within
a factor of 2 for line graphs of triangle-free graphs. For general graphs, these
parameters can be very different. The equivalence covering number of the
n-vertex star graph, which is an interval graph, is n− 1. As far as we have
tried, we could not come up with an explicit example of a chordal graph
with a large track number. Nevertheless we can use a counting argument
to show that the track number of chordal graphs is unbounded. Since an
n-vertex interval graph is completely determined by the relative order of the
2n endpoints of the intervals in an interval representation, the number of
labelled interval graphs on n vertices is at most (2n)!. Hence, for any k ≥ 1,
the number of labelled n-vertex graphs which can be written as the union of
k interval graphs is at most

((2n)!
k

)
which is 2O(kn lgn). On the other hand, the

number of labelled n-vertex chordal graphs is at least 2Ω(n2). One can see
this by counting the number of labelled split graphs on n vertices where the

first
⌊

1
2n
⌋

vertices form a clique and the remaining
⌈

1
2n
⌉

vertices can pick

any subset of the first
⌊

1
2n
⌋

vertices as its neighbourhood. This shows that

the equivalence covering number cannot be bounded above by any function
of the track number alone and the track number cannot be bounded above
by any function of the chordal covering number alone.

1.2. Background

As mentioned earlier, we use results and techniques from [EGK10] to esti-
mate the chordal covering number of line graphs. The starting point there is
a connection that they establish between equivalence coverings of L(G) and
a certain family of orientations of G. An orientation of an undirected simple
graph G is the directed graph formed by assigning one of the two possible
orientations to each edge of G. Two incident edges xy and xz of G are said
to form an elbow in an orientation of G if both of them are directed towards
x or if both of them are directed away from x. In the first case, we will call
the elbow an in-elbow and in the second case, we will call it an out-elbow. A
family O of orientations of G such that every pair of incident edges xy and
xz in G form an in-elbow (resp., elbow) in at least one of the orientations
in O is called an in-elbow cover (resp., elbow cover) of G. The minimum
size of an in-elbow cover (resp., elbow cover) is denoted by in-elb(G) (resp.,
elb(G)).

Esperet et al. observed that given an in-elbow cover O of a graph G, one
can construct an equivalence cover of L(G) using |O| equivalence graphs.
The set of vertices forming the j-th clique in the i-th equivalence graph in
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the cover of L(G), 1 ≤ j ≤ |G|, 1 ≤ i ≤ |O|, is the set of edges incident to
and directed towards the j-th vertex of G in the i-th orientation in O. In
the other direction, they showed that, given an equivalence cover F of L(G),
one can construct an in-elbow cover of G using 3|F| orientations of G. Let
H be an equivalence subgraph of L(G). Every clique in H corresponds to
either a set of edges in G containing a common vertex (star-clique) or three
edges forming a triangle in G (triangle-clique). Consider the following three
orientations of G based on H. The edges of G which form a star-clique in H
are oriented towards the common vertex in all the three orientations. The
edges of G which form a triangle-clique in H are oriented such that each pair
among these three edges form an in-elbow in one of the three orientations.
Repeating this for every equivalence graph in an equivalence cover of L(G),
they concluded that

(2)
1

3
in-elb(G) ≤ eq(L(G)) ≤ in-elb(G).

Similarly, since the three pairs of incident edges in a triangle-clique can be
elbow-covered using two orientations, one can also see that

(3)
1

2
elb(G) ≤ eq(L(G)) ≤ 2 elb(G),

where the second inequality follows from the trivial fact that in-elb(G) ≤
2 elb(G).

The first result in this paper is that elb(G) ≤ cc(L(G)) when G is
triangle-free (Theorem 2.1). Before getting to it, we state and briefly dis-
cuss the quantitative connection between the elbow covering number and
the chromatic number of a graph that was established in [EGK10].

Theorem 1.3 (Theorem 10 in [EGK10]). For any graph with at least one
edge,

elb(G) = dlg lgχ(G)e+ 1.

From Theorem 1.3 and the inequalities in (3), it follows that

(4)
1

2
(dlg lgχ(G)e+ 1) ≤ eq(L(G)) ≤ 2 (dlg lgχ(G)e+ 1) .

They remarked towards the end of the paper that, using the notion of 3-

suitability, one can improve the upper bound to lg lgχ(G)+
(

1
2 + o(1)

)
lg lg lgχ(G).

A family F of total orders of [n] is 3-suitable if, for every 3 distinct elements
a, b, c ∈ [n] there exists a total order σ ∈ F such that a succeeds both b
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and c in σ [Dus50]. Following Spencer [Spe72], let N(n, 3) denote the car-
dinality of a smallest family of total orders that is 3-suitable for [n]. Very
tight estimates which can determine the exact value of N(n, 3) for almost
all n were given by Hoşten and Morris in 1999 by finding a nice equiv-
alence of this problem to a variant of the Dedekind problem [HM99]. It
follows from there that f(n) − o(1) ≤ N(n, 3) ≤ f(n) + 1 + o(1), where
f(n) = lg lg n+ 1

2 lg lg lg n+ 1
2 lg π.

Let c : V (G)→ [k] be a proper vertex colouring of an undirected graph
G and let F be a family of 3-suitable total orders of the colours [k]. For each
total order in σ ∈ F construct an orientation of G by directing each edge xy
from x to y if c(x) precedes c(y) in σ and the opposite otherwise. It is easy
to verify that this family of orientations is an in-elbow cover of G. Hence
in-elb(G) and thereby eq(L(G)) is at most N(χ(G), 3).

2. Chordal covering number of line graphs

In this section we first show that, for a triangle-free graph G, the chordal
covering number of L(G) is at least the elbow covering number of G. This
lower bound can be written in terms of χ(G) using Theorem 1.3. Using this
lower bound and two classical Ramsey-theoretic results from literature, we
answer two questions posed by Milans, Stolee, and West [MSW15].

A simplicial vertex in a graph G is one whose neighbourhood induces a
clique in G. A perfect elimination ordering of G is an ordering (v1, . . . , vn)
of V (G) such that vi is a simplicial vertex in G[{vi, . . . , vn}], for each i. It
is well known that a graph has a perfect elimination ordering if and only if
it is chordal [FG65].

Theorem 2.1. For every triangle-free graph G,

elb(G) ≤ cc(L(G)).

Proof. Let G be any triangle-free graph. Let H be a smallest collection of
chordal graphs whose union is L(G). Based on each chordal graph H ∈ H,
we construct an orientation OH of G such that every pair of incident edges
of G which are adjacent as vertices in H will form an elbow in OH . Since
every pair of incident edges of G are adjacent as vertices in at least one H
in H, it is easy to verify that the family of |H| orientations constructed with
the promised property will serve as an elbow-cover of G with size cc(L(G)).

Let H ∈ H be arbitrary. By allowing isolated vertices if necessary, we
assume that H is a spanning subgraph of L(G). Consider a perfect elimina-
tion ordering e1, . . . , em of H, where m is the number of edges in G. That is,
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∀i ∈ [m], ei is a simplicial vertex in Hi = H[{ei, . . . , em}]. For each i going
from m down to 1, the edge ei in G is oriented so that it forms an elbow in
OH with the most recently oriented edge of G which is adjacent as a vertex
to ei in Hi. If ei has no neighbours in Hi, then it is oriented arbitrarily.

Now we argue that every pair of incident edges in G which are adjacent
as vertices in H will be oriented to form an elbow in OH . For each i ∈ [m], let
Ni denote the neighbours of ei in Hi. We call an edge ei in OH “good” if it
forms an elbow in OH with every edge of G which belongs to Ni. It is enough
to show that every edge ei, i ∈ [m] is good. We show this by induction on
(m− i). Vacuously, em is good. For some i < m, let us assume, by induction,
that ei′ is good for all i′ > i. If |Ni| ≤ 1, then it is clear that ei will be
good. If |Ni| ≥ 2, let j = min{k : ek ∈ Ni}. By construction ei and ej form
an elbow in OH . Moreover, ej is good in Hj and hence ej forms an elbow
with every edge in Nj . Since ei is simplicial, Ni ∪ {ei} induces a clique in
Hi; that is, these edges are pairwise incident in G. Since G is triangle-free,
these edges share a common vertex. Since ei forms an elbow with ej and ej
forms an elbow with every edge in Nj , which is a superset of Ni \ {ej},

Remark. From Theorem 2.1, (1) and (3), we see that for every triangle-free
graph G,

cc(L(G)) ≤ τ(L(G)) ≤ eq(L(G)) ≤ 2 elb(L(G)) ≤ 2 cc(L(G)).

From Theorem 1.3 and Theorem 2.1 one can immediately infer

Corollary 2.2. For every triangle-free graph G,

dlg lgχ(G)e+ 1 ≤ cc(L(G)).

We can use the above result together with some celebrated Ramsey-
theoretic results to estimate the chordal covering number of complete graphs
and general graphs. Since the family of chordal graphs is hereditary, cc(G′) ≤
cc(G) whenever G′ is an induced subgraph of a graph G. Since the line graph
of a subgraph is an induced subgraph of the line graph of the original graph,
cc(L(H ′)) ≤ cc(L(H)) whenever H ′ is a subgraph of H.

It was established by Kim [Kim95] that for every sufficiently large n,
there exists an n-vertex triangle-free graph Gn with

χ(Gn) ≥ 1

9

√
n

lnn
.

Since Gn is a subgraph of Kn, cc(L(Gn)) ≤ cc(L(Kn)). This gives the lower
bound in
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Corollary 2.3.

lg lgn−o(1) ≤ cc(L(Kn)) ≤ τ(L(Kn)) ≤ lg lg n+
1

2
lg lg lg n+

1

2
lg π+1+o(1).

The upper bound follows from the inequality eq(L(Kn)) ≤ N(n, 3). So
we can remove the denominator from the lower bound of Ω(lg lg n/ lg lg lg n)
on τ(L(Kn)) from [MSW15] as suspected by the authors. Furthermore, it
shows that τ(L(Kn)) is asymptotically (1 + o(1)) lg lg n.

Finally, we use these two results together with a beautiful result of Rödl
to prove Conjecture 1.1. It was shown by Rödl [Röd77] that, for arbitrary
positive integers m and n, there exits a φ(m,n) such that if χ(G) ≥ φ(m,n),
then the graphG contains either a clique of sizem or a triangle-free subgraph
H with χ(H) = n. Consider any sequence (Gn)∞n=1 of graphs, with χ(Gn)→
∞. Suppose τ(L(Gn)) was bounded above by some constant b. Let B = 22b+1

and choose a graph G from the sequence (Gn) with χ(G) ≥ φ(B,B). Using
Rödl’s result, we can conclude that G either contains a B-vertex complete
graph KB or a triangle-free graph H with χ(H) = B. In either case, we have
shown that the chordal covering number of the line graph of that subgraph
is more than b (Corollaries 2.3 and 2.2). This contradiction proves

Theorem 2.4. For a sequence (Gn)∞n=1 of graphs, if χ(Gn) → ∞, then
cc(L(Gn))→∞.

Thus we affirm Conjecture 1.1. Further, since cc(L(G)) ≤ τ(L(G)) ≤
eq(L(G)) ≤ N(χ(G), 3), we see that, for a family of graphs G, {τ(L(G)) :
G ∈ G} is bounded if and only if {χ(G) : G ∈ G} is bounded.

3. Concluding remarks

The function φ(m,n) obtained by Rödl is a tower of n’s of height m. Hence
the lower bound obtained for τ(L(G)) for a general graph G in terms of
χ(G) is of very small order. We suspect that, like eq(L(G)), cc(L(G)) might
also be bounded below by Ω(lg lgχ(G)).
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